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Using a minimal algebraic model for the thermodynamics of binary rod-polymer mixtures, we provide
evidence for a quintuple phase equilibrium; an observation that seems to be at odds with the Gibbs phase
rule for two-component systems. Our model is based on equations of state for the relevant liquid crystal
phases that are in quantitative agreement with computer simulations. We argue that the appearance of a
quintuple equilibrium, involving an isotropic fluid, a nematic and smectic liquid crystal, and two solid
phases, can be reconciled with a generalized Gibbs phase rule in which the two intrinsic length scales of the
athermal colloid-polymer mixture act as additional field variables.
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Dispersions of rodlike colloidal particles, be they of
biological origin such as tobacco mosaic viruses [1] or
filamentous bacteriophage fd viruses [2], or of synthetic
nature, like cellulose nanocrystals [3], boehmite [4] or silica
colloids [5], may form liquid crystal phases characterized by
a concurrence of fluidity and long-range crystalline order
[6–8]. The phase states of these dispersions are strongly
influenced by colloid concentration and the rod length-to-
diameter aspect ratio. In order to study the intricate interplay
of various entropic effects, rod-shaped colloids are usually
modeled as hard spherocylinders (HSCs) or infinitely thin
needles only interacting through their excluded volume
[6–14]. In real-world systems the phase behavior is however
influenced by additional soft or long-range interactions, the
presence of other species, or by size or shape dispersity. The
recent decade has seen a quest for simple interparticle
potentials that capture these effects and are capable of
generating complex multiphase behavior and exotic crystal-
line structures [15,16]. Often these potentials are inspired by
interactions between core-corona particles comprising
multiple length sales [15,16]. These potentials have been
shown to stabilize novel phase morphologies such as cluster
crystals [17] and quasicrystals [18].

Here we explore such complexity by examining the effect
of depletion interactions induced by the presence of non-
adsorbing polymers [19,20], which are known to consi-
derably enrich conventional colloidal phase behavior
[21–27]. The depletion interaction is caused by a reduction
of the number of possible configurations of the polymer
chains within the so-called depletion zone around each
colloidal particle. When the depletion zones between adja-
cent colloids overlap, the free volume available for the
polymers is increased, and thus the polymer entropy
increases as well, leading to an effective attraction between
the colloids. The depletion interaction is often applied to
modulate attractions with well-defined range and strength
between colloidal particles [20]. Colloid-polymer mixtures
are known to display a wealth of phase states and are widely
used as the basis for directing mesoscale order and self-
assembly in soft matter [28–30]. Moreover, solid nano-
particles mixed with polymers play a prominent role in
various industrial formulations as well as in biological
systems [31–33].
The influence of the depletion attraction on colloidal

phase behavior can be predicted from free volume theory
(FVT) [19,20], which accounts for the presence of
polymers by correlating the mean “free” volume that is
accessible to the polymer to colloidal structure. As this
theory is perturbative in nature it requires equations of state
of HSCs for all involved phases. For certain phase states
there is however a lack of tractable analytical equations of
state and therefore the rod-polymer phase behavior could
only be theoretically scrutinized for a limited number of
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phases and rod-polymer size ratios [34–37]. Building on
previous modeling efforts for pure rod dispersions [38]
and disk-polymer mixtures [39], we develop a tractable
quantitative theory to map out the complete phase diagram
for two-component rod-polymer mixtures and provide
evidence for stable quadruple and quintuple equilibria,
that have hitherto gone unnoticed in previous modeling
attempts [34–37]. The microscopic conditions (rod aspect
ratio and rod-polymer size ratio), under which these
multiphase equilibria are found, are within reach for
experimentally relevant rod-polymer mixtures.
First we briefly discuss the phase behavior found in pure

rod dispersions and the equations of state used to describe
the different phases. Then we explain how phase co-
existences are predicted in the colloid-polymer mixtures.
Colloidal rods are represented as hard spherocylinders

with length L and diameter D (total length, including
hemispherical ends, equals LþD). From simulation
results of HSC suspensions it is known that, with increasing
concentration, isotropic (I), nematic (N), smectic A (SmA),
AAA crystal, and ABC crystal phases may be observed, as
indicated in the top panel of Fig. 1 [7,13,14]. In the I phase
the rods have random orientations, while in the other phases
they are aligned along a common nematic director. Both I
and N phases are fluids and do not possess long-range
positional order. Approximate equations of state for these
states are available from both scaled particle theory (SPT)
[9] and Parsons-Lee (PL) theory [10–12]. Using a Gaussian
approximation for the distribution of rod angles with
respect to the nematic director, one can construct algebraic

equations of state [37]. Given that PL theory tends to be
more accurate for weakly anisotropic rods while SPT has
proven more reliable for long rods, we employ a straight-
forward sigmoidal interpolation procedure in order to
accurately cover the full range of aspect ratios [40]. We
emphasize that the observed phase behavior is robust and is
not qualitatively affected by details of the rod-polymer
model (see Fig. S1 in the Supplemental Material [41]).
In the SmA, AAA, and ABC phase the particles are

confined in layers and the nematic director is perpendicular
to the layers. For the SmA phase there is no long-range
positional order within the layers, while in the AAA and
ABC phases the particles are ordered hexagonally. In the
AAA phase the rods of adjacent layers are stacked on top of
each other, while in the ABC phase they are stacked in
between the rods of adjacent layers. For all these three
phases we have used an extended cell theory similar to Graf
and Löwen [38] and the results were subsequently cast into
algebraic equations [40]. For the SmA phase this includes a
thermodynamic description of 2D disks that captures the in-
plane fluidity of rods projected onto the smectic plane. In
the sphere limit of L=D → 0 our equations of state for the
isotropic and ABC phases become equivalent to those of,
respectively, a hard sphere fluid and a fcc crystal.
Phase coexistence between two phases can be esta-

blished by imposing mechanical and chemical equilibrium
expressed by equality of osmotic pressure Π and chemical
potentialμ. In Fig. 1we show the predictions for the binodals
(solid curves) obtained from the analytical equations of state
as a function of volume fraction η and aspect ratio D=L.
Comparing predictions with computer simulation results of
Bolhuis and Frenkel (data points) [14] we find excellent
agreement. We remark that our model asserts that all phase
transitions are first order.While this is true for a large section
of the phase diagram, there is still some discussion as to the
nature of the N-SmA transition at small D=L. Density
functional theory predictions suggest that it is second order
below a certain critical point [42–45], while simulation
results are inconclusive on the transition order [14].
In the colloid-polymer mixtures the nonadsorbing

polymers are modeled as penetrable hard spheres with
radius δ [20]. The polymers behave as hard spheres with
respect to the colloids, yet freely overlap each other. Since
all particle interactions are of the excluded-volume type, all
phase transitions are driven by entropy alone so that the
mixture is strictly athermal (ΔH ¼ 0, with H the enthalpy
of the mixture). Previous calculations on colloid-polymer
models that include explicit polymer-polymer interactions
have demonstrated that the penetrable hard sphere
approximation for the polymer works well for the relatively
small polymers we consider here [20,46,47]. In accordance
with FVT, we use a semigrand canonical ensemble, where
the colloid-polymer mixture is held in contact with a
polymer solution reservoir through a semipermeable
membrane that is impermeable to the rods [19]. FVT states

FIG. 1. Phase behavior of hard spherocylinders as a function of
rod volume fraction η and aspect ratio D=L from both theory
(solid curves) [40] and simulation (data points) [14]. The stable
phases include the isotropic (I), nematic (N), smectic A (SmA),
AAA crystal, and ABC crystal phase.
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that the semigrand potential Ω of the mixture can be
approximated as follows [19]:

ω ¼ Ωvc
kBTV

¼ f0 − αΠ̃R; ð1Þ

where ω is the normalized semigrand potential, vc the rod
volume, kBT the thermal energy, V the volume of the
system, f0 the normalized Helmholtz free energy for a pure
colloid dispersion, α ¼ hVfreei=V the average fraction of
the system volume available to polymers, and Π̃R the
normalized osmotic pressure of the polymers in the
reservoir, which is proportional to the reservoir polymer
volume fraction ϕR via Π̃R ¼ ϕRð3Γ − 1Þ=ð2q3Þ. Here we
have defined a normalized total rod length Γ and polymer
size q relative to the rod diameter: Γ ¼ 1þ L=D and
q ¼ 2δ=D. The rod aspect ratio and the colloid-polymer
size ratio are the two basic length scales of our model and
the phase behavior depends sensitively on particle geo-
metry through variation of Γ and q. We estimate α by
assuming that the average free volume for the polymer in
the system is unaffected by the presence of the polymers.
From scaled particle theory we can express the free volume
fraction as [34]

α ¼ ð1 − ηÞ exp½−Q�; ð2Þ
where η is the colloid volume fraction and Q¼ 3yqð2Γþ
qΓþqÞ=ð3Γ−1Þþ18y2q2Γ2=ð3Γ−1Þ2þ2q3Π̃0=ð3Γ−1Þ
with y ¼ η=ð1 − ηÞ and the superscript 0 again referring to
the pure rod dispersion for the same phase type.
A representative set of phase diagrams for colloid-

polymer mixtures is shown in Fig. 2 in terms of the polymer
reservoir volume fraction ϕR versus the rod volume fraction
η. The rod aspect ratio is fixed at L=D ¼ 12 and the
polymer-rod size ratio is set to q ¼ 0.4, 0.525, and 0.57.
In the plots we show the binodals (solid curves) and three-

and four-phase coexistences (dashed lines). In most cases the
miscibility gaps widen as the polymer concentration is
increased. At the points where two binodals coincide, we
find three-phase coexistence. For instance at q ¼ 0.4 (left
panel), the miscibility gap of N-SmA and SmA-AAA
coexistence widens as ϕR increases. At around η ¼
0.4–0.65 and ϕR ≈ 0.05 the binodals coincide and a triple
N-SmA-AAA equilibrium emerges.
Increasing the polymer size brings about considerable

qualitative changes in the phase diagram. For example, at
q ¼ 0.57 (right panel) the N-SmA binodal coincides with
the I-N binodal leading to a triple I-N-SmA coexistence
instead. Similarly the N-AAA and I-N-AAA coexistences
are only present at the smaller q ¼ 0.4, while the I-SmA
binodals and I-SmA-AAA triphasic coexistence are only
stable at q ¼ 0.57. The intermediate polymer size of
q ¼ 0.525 (middle panel) marks the exact size ratio where
all three binodals coincide at the same polymer reservoir
concentration. This leads to an I-N-SmA-AAA four-phase
coexistence that is reminiscent of the predictions for the
disk-polymer systems [39].
The four-phase coexistence prompts us to contemplate

the Gibbs phase rule for an athermal system, which
reads

F ¼ C − N þ 1; ð3Þ

where F is the number of degrees of freedom, C is the
number of different components, and N is the number of
coexisting phases. If we consider the solvent as an irrelevant
background medium, we find that an effective two-
component system (C ¼ 2) should not be able to display
a four-phase equilibrium, since this would imply F being
negative. Vega and Monson [48] proposed that for mixtures
with anisotropic particles the relevant shape aspect ratios
should be added in the Gibbs phase rule as an extra field
variable. This has been used to explain the presence of triple

FIG. 2. Phase diagrams of colloid-polymer mixtures in terms of the colloid volume fraction η and polymer reservoir volume fraction
ϕR for colloidal rods of aspect ratio L=D ¼ 12 and polymers of size q ¼ 2δ=D ¼ 0.4, 0.525, and 0.57. Binodals are displayed as solid
curves, while three- and four-phase coexistences are indicated as dashed lines.

PHYSICAL REVIEW LETTERS 125, 127803 (2020)

127803-3



points in pure dispersions of hard anisotropic particles.
Using Monte Carlo simulations Akahane et al. [49] have
demonstrated the validity of a generalized Gibbs phase rule
by revealing a four-phase coexistence in a (thermal) one-
component system with an anisotropic interaction potential.
Inspired by these observations we propose the following
generalized Gibbs phase rule for athermal systems:

F ¼ C − N þ Sþ 1; ð4Þ
where S is the number of independent microscopic length
scales influencing the free energy (see Supplemental
Material [41] for a detailed derivation). In our particular
rod-polymer model both the rod aspect ratio L=D and
colloid-polymer size ratioq affect the anisotropic interaction
between rods andmust therefore be considered as additional
“geometric” field variables, so that S ¼ 2. Subsequently, the
generalized Gibbs rule Eq. (4) implies that the maximum
number of possible coexisting phases (corresponding to
F ¼ 0) should be five and that the quadruple equilibria still
possess a single degree of freedom.
While Fig. 2 only shows the I-N-SmA-AAA coexistence

at a particular L=D and q, it is actually found for a range of
values given that F ¼ 1. This implies that there may be a
single point in the parameter space where a five-phase
coexistence is generated. Indeed, for L=D ¼ 6.086 and
q ¼ 0.470 the I-N, N-SmA, SmA-AAA, and AAA-ABC
binodals all coincide at the same polymer reservoir
concentration, thus generating an I-N-SmA-AAA-ABC
quintuple point as indicated in Fig. 3 (left graph). Even
though the generalized Gibbs phase rule enables, in
principle, the appearance of a quintuple point, it is not
guaranteed to emerge for any system with C ¼ 2 and
S ¼ 2, e.g., for the disk-polymer systems considered
previously [39] a quintuple point was not observed.

While quintuple coexistence occurs at a uniform reservoir
polymer concentration, the polymer contents in the
individual coexisting phases, given by ϕS ¼ αϕR, are
distinctly different in view of their unequal free-volume
fractions as shown in the right plot of Fig. 3.
It is however not possible to determine the relative

volume fraction occupied by each of the coexisting phases
with the conventional lever rule as this only applies for up
to three phases in a two-component system. Given that the
additional geometric variables are both degenerate across
the phases, no new boundary conditions emerge to devise a
generalized lever rule. This is similar to predicted triple
points in pure dispersions of anisotropic particles. Instead
there is a range of possible volume ratios depending on the
total concentration of the particles. This includes the case
where the volume of a phase vanishes. For instance in a
system of pure HSCs at the I-N-SmA triple point and a total
concentration near the lower limit of this coexistence, it is
equally favorable to have an I-N, I-SmA, or I-N-SmA
coexistence where the N and SmA phase will occupy a
relatively small volume. For the similar triple point of
thermal one-component systems it was argued how the
exact phase volumes are determined from an additional
boundary condition in the specific entropies [50]. Although
there is no direct evidence of single-component athermal
triple equilibria, the existence of such equilibria is hinted at
by computer simulations for hard dumbbells and sphero-
cylinders [48].
In conclusion, we have demonstrated the possibility of

quintuple phase equilibria using a minimal model for an
athermal rod-polymer mixture; an observation that is
surprising in view of the Gibbs phase rule, that states that
only two- and three-phase equilibria should be expected.
We rationalize the observed quadruple and quintuple

FIG. 3. Phase diagrams of rod-polymer mixtures in terms of the rod volume fraction η and polymer reservoir (left panel) or system
volume fraction (right panel), ϕR or ϕS, for rod aspect ratio L=D ¼ 6.086 and polymer size q ¼ 0.470. Binodals are displayed as solid
curves, while the five-phase coexistence is indicated by a dashed line. In the system representation (right panel) five-phase coexistence is
predicted over the entire region enclosed by the dashed lines.
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equilibria by contemplating a modified phase rule which
includes the two intrinsic length scales of the mixture
(rod aspect ratio and colloid-polymer size ratio) as addi-
tional field variables. A generalized lever rule, however,
remains thus far elusive, and future efforts should be
directed towards determining the precise phase fractions
of the coexisting isotropic, nematic, smectic A, and ABC
and AAA solid phase states. The L=D- and q-values at
which the quintuple equilibrium is observed are, however,
entirely realistic and should be realizable experimentally in
colloidal rods mixed with nonadsorbing polymer. Strong
size dispersity of the colloidal particles may suppress
smectic and crystalline order in favor of the columnar or
smectic B phase [2,5] or complicate the phase behavior
through numerous multiphase coexistences, unseen in
pure-component colloidal systems [51]. Our study further
demonstrates that the introduction of nonadsorbing
depletants may play a key role in stabilizing targeted
crystal morphologies formed by anisotropic colloids
[52,53] by rendering those high-density phases in simul-
taneous coexistence with low-density fluids thus facili-
tating their emergence and detection.
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