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We present wave transport experiments in hyperuniform disordered arrays of cylinders with high
dielectric permittivity. Using microwaves, we show that the same material can display transparency, photon
diffusion, Anderson localization, or a full band gap, depending on the frequency ν of the electromagnetic
wave. Interestingly, we find a second weaker band gap, which appears to be related to the second peak of
the structure factor. Our results emphasize the importance of spatial correlations on different length scales
for the formation of photonic band gaps.
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In analogy to electronic semiconductors, dielectric
materials in a periodic [1–4], quasiperiodic [5], or amor-
phous configuration [6–10] can all display full band gaps.
For the latter materials, due to the absence of long range
order, the band gap has been associated with local reso-
nances of the scatterers or correlated scattering clusters,
which is reminiscent of the tight-binding model in elec-
tronic semiconductors [11]. In contrast to electrons, how-
ever, there exist no bound photon states making this
analogy questionable. Other proposals have linked the
opening of a gap directly to the suppression of density
fluctuations on large length scales, known as stealthy
hyperuniformity (SHU) [7]. While the precise origin of a
band gap in an amorphous dielectric material is yet
unknown, the transport properties inside the gap are well
understood [3,9,10,12]. In both periodic and nonperiodic
band gap materials, an incident light wave enters by a finite
distance LB, called the Bragg length, and is then totally
reflected. For a slab of thickness L, the wave can tunnel
through the material with a probability T ∼ e−L=LB.
However, outside the gap, the transport properties differ
strongly. Photonic crystals either reflect, diffract into Bragg
peaks, or they are transparent, which is a direct conse-
quence of long-range order and the corresponding sharp
Bragg maxima in the structure factor Sðk⃗Þ. The situation is
entirely different for amorphous materials, which scatter
light strongly over a broad range of k⃗. Recent numerical
work has revealed that this leads to a rich transport phase
diagram for amorphous band gap materials—with regions
of transparency, Anderson localization, and light diffusion
—not present in ordered materials [10]. In contrast to
disordered photonic crystals, discussed for example in the
celebrated article by Sajeev John in 1987 [2], the diffuse
scattering and localization observed outside the gap is not a

consequence of imperfections but an inherent feature of
the amorphous material [9]. Introduced in 2004, stealthy
hyperuniformity provides an elegant way to construct such
idealized disordered materials with finely tunable correla-
tions encoded by the degree of stealthiness χ, ranging from
0 → 0.5 before the onset of crystallization [13].
Thirty years after John’s seminal work on the interplay

between photonic band gap formation and strong locali-
zation in disordered dielectric lattices [2], a controlled
experimental study of the optical transport properties in
between ordered and disordered states of matter is still
lacking [14]. Here, we present experimental results obtained
for a 2D system composed of high index dielectric cylinders
in air [15] placed according to SHU point patterns [7].
To probe the different transport regimes experimentally, we
conduct measurements in the microwave regime since the
frequency span in this regime is much larger than in the
optical one. Furthermore, our microwave setup provides a
more versatile platform compared to optics. Our samples
consist of about N ≃ 200 cylindrical scatterers (dielectric
permittivity ε ≃ 36, radius r ¼ 3 mm, height h ¼ 5 mm; the
Mie scattering efficiency of such a cylinder is shown in the
Supplemental Material, Fig. S1 [16]) placed in an aluminum
2D cavity (50 × 50 × 0.5 cm3) on a SHU point pattern (on a
square of size of approximately 25 × 25 cm2) generated
by simulating an annealing relaxation scheme [9] [see
Fig. 1(a)]. We perform measurements on five different
configurations χ ¼ 0.15, 0.25, 0.30, 0.40, and a triangular
lattice. For all the samples studied, we kept the number
density constant (ρ ≃ 0.32 cm−2). The point patterns and the
structure factors of the samples are shown in the
Supplemental Material, Fig. S2. The cavity can be consid-
ered as two dimensional for the microwave frequencies ν <
10 GHz studied. Under this condition, only the first
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transverse magnetic mode, TM0, exists in air: the electric
field is perpendicular to the plane, and the field amplitude is
uniform over the cavity height [23]. We mimic an infinite 2D
system by placing absorbing carbon loaded polyurethane
foam between the sample and the metallic walls of the cavity.
We raster the cavity with a mobile antenna that is inserted by
a robotic arm through holes drilled into the upper plate with a
diameter 2 mm, on a 5 × 5 mm2 grid unit cell. Considering
the sample size, and the fact that we are not able to penetrate
the cavity at the holes above the scatterers, we end up with
about ∼2700 measured positions.
At each grid point ðx; yÞ, we measure the complex

transmission spectrum S12ðνÞ between a fixed antenna
(1) placed at the center of the cavity and the mobile
antenna (2) using a vector network analyzer. Figure 1(b)
shows examples of measured spectra jS12ðνÞj2 between the
central position 1 and probe position 2 for different χ values
and for a given distance d between the antennas. The small
transmission values of order 10−6 or less are because the
receiving antenna is weakly coupled to the cavity. The
measured spectra consist of a superposition of peaks which
are associated to the resonances of the system. We extract
their frequency, complex amplitude and width using
harmonic inversion as described in Refs. [24,25]. We then
cluster the resonances measured on all the lattice points in
order to reveal all the eigenmodes present in the system

without being spoiled by false resonances induced by noise
(see the Supplemental Material [16], Sec. IIIA).
In Fig. 2, we plot a histogram of the frequencies of the

eigenmodes, which is directly proportional to the density of
states (DOS). We compare the results for SHU point
patterns with different values of χ, to the results obtained
for a triangular lattice. As shown in earlier numerical work,
the triangular lattice is the champion photonic crystal
structure in 2D, with a gap slightly larger than disordered
hyperuniform structures [9]. Our experimental data con-
firms the two first TM photonic band gaps predicted for the
triangular lattice [3]. We also find frequency windows
without states for the SHU disordered systems.
Surprisingly, not only the first but also the second band
gap is present in the χ ¼ 0.4 sample. To our knowledge,
second and higher order band gaps have so far neither been
predicted nor observed in disordered systems. This finding
is in contradiction to previous claims about the origin of
band gaps in disordered photonic materials [6,26,27]. To
corroborate additional evidence for this interesting obser-
vation, we performed band structure calculations, using the
same parameters as in the experiment (see the
Supplemental Material [16], Sec. IV). These numerical
data confirm the existence of a second-order band gap
for χ ≥ 0.4. Both the first and the second gap approxi-
mately match the maxima of SðkÞ of the triangular lattice
and of the SHU structures, supporting earlier proposals that
short-range spatial correlations play a key role for the
opening of band gaps in amorphous photonic materials [9].
Experimentally, we observe a narrow photonic band gap
even for our most disordered sample (χ ¼ 0.15). Our
numerical data for a large ensemble of system realizations,
however, suggest that the band gap closes for χ ≲ 0.3 and
reduces to a pseudogap with a small but finite density of

(a)

(b)

FIG. 1. (a) Setup for 2D microwave scattering and transport
experiments. The dielectric cylinders are placed in between two
conducting aluminum plates. To reveal the interior of the sample
the top plate has been removed. We place absorbing foam (LS-14
from Emerson & Cuming) around the sample. A fixed antenna (1,
black arrow) is positioned at the center of the cavity,
ðx; yÞ ¼ ð0; 0Þ. The mobile antenna (2, red arrow) enters the
cavity through small holes arranged on a ðx; yÞ grid in the top
plate. (b) Transmitted power jS12ðνÞj2 for different configurations
(χ) and for a given distance d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

between (1) and (2).

FIG. 2. Experimental density of states (DOS). Histogram of
states per 0.15 GHz frequency interval for different configura-
tions: χ between 0.15 and 0.40, and for the triangular lattice. The
hatched areas are a guide to the eye to illustrate the measured
band gap widths as a function of χ.
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states. Naturally, variations between different realizations
of hyperuniform materials become more pronounced for
smaller values of χ (see the Supplemental Material [16],
Fig. S5) and moreover the number of states per frequency
bin is small for a finite sized system. This can lead to the
situation that the central frequency and width of the band
gaps depend on the precise realization of the point pattern,
which is a distinct feature of disordered materials not found
in crystals. For larger values of χ these variations are
suppressed, and the gap becomes more robust against
statistical fluctuations.
We now consider the optical properties of our material

outside the gap [10]. The amplitude of the peaks observed
in Fig. 1(b), and clustered to reveal the eigenmodes, differs
from one position to the other and from this we obtain an

electric field amplitude map Eνðx; yÞ of an eigenmode [28],
see the Supplemental Material [16], Sec. III. These eigenm-
odes maps, shown in the first line of Fig. 3, reveal the
striking variations in optical transport properties across the
spectral range covered by our experiment. At low frequen-
cies, we observe simple square cavity modes as if the
medium was homogeneous, which is a remarkable result
given the fact that at ν ∼ 2 GHz, the system size L ¼
25 cm is almost two orders of magnitude larger than the
Boltzmann mean free path lsðνÞ of the cylinder ensemble
(see the Supplemental Material [16], Fig. S1), with lsðνÞ ¼
½σsðνÞρ�−1 given by the total scattering cross section σsðνÞ
and the number density ρ. An alternative way to study wave
propagation in the SHU material is to monitor the wave
emitted by the central antenna as it propagates through the

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 3. Electromagnetic field distribution of the eigenmodes and wave transport in the time domain for a sample with χ ¼ 0.30
(νc ¼ 2.88 GHz). (a)–(e) Signed amplitudes of selected eigenmodes at different characteristic frequencies. (a) cavity mode, (b) diffusive
mode, (c) dielectric localized mode, (d) air localized mode, and (e) diffusive mode. (f)–(j) Maps of the electric field for wave transport at
different times t1, t2, t3 and for different central frequencies f0. The wave—a Gaussian pulse centered at f0 and having a width of
0.5 GHz in the frequency domain—is emitted at the center of the maps, and its temporal representation is shown in the last line:
ℜ½F̃f0;ΔνðtÞ� is the real part of the Fourier transform of the Gaussian bandpass filter. The colored vertical lines indicate the time of each
frame shown t1, t2, t3. Entire videos are included in the Supplemental Material [16], Videos S6. The color scale is adjusted for each
individual panels.
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medium in the time domain. By calculating the real part of
the Fourier-transform of S12ðνÞ × Ff0;ΔνðνÞ (with Ff0;Δν a
band pass filter of bandwidth Δν centered around f0) at all
points on the lattice, we reconstruct movies of the propa-
gating electromagnetic fields as a function of time for the
selected bandwidthΔν. Individual frames of the movies are
shown in Figs. 3(f)–3(j) (details on the numerical procedure
and the entire movies are included in the Supplemental
Material [16], Sec. V). Figure 3(f) shows that at low
frequencies a circular wave propagates from the central
antenna into the medium again signaling transparency.
Note that the disordered pattern observed at t3 in Fig. 3(f) is
due to the nonperfectly absorbing foams placed around the
sample which reflect part of the signal (for more details, see
the Supplemental Material [16], Videos S6-1 and S6-2).
From the velocity of the circular wave in the medium we
can derive the effective refractive index of the samples and
find neff ∼ 1.8. Equally, counting the nodal lines of the
modes [Fig. 3(a)] and relating them to their frequencies, we
obtain values of the effective refractive index of the
metamaterial in the range neff ¼ 1.7� 0.3. The uncertainty
is due to the fact that, for disordered systems, the cavity size
is not well defined and moreover, we observe a slight
increase of neff from ν ¼ 1 → 3 GHz. For comparison, the
Maxwell-Garnett effective refractive index, which in 2D
corresponds to the square root of the surface averaged
permittivity, is nMG ¼ 2.05.
Torquato and coworkers named their designer materials

“stealthy” hyperuniform because they predicted them
to be fully transparent below a threshold frequency
ν < νc [29]. The latter is equivalent to saying that L=l⋆ →
0 (with l⋆ the transport mean free path), while L=ls
remains finite. In this first-order or single-scattering
approximation νc ¼ ðc=neffÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρχ=πÞp

[10]. For our system
parameters, the theoretical νc range from ≃2.2 GHz
(χ ¼ 0.15) to ≃3.0 GHz (χ ¼ 0.4) based on an effective
refractive index of neff ∼ 1.8. Leseur et al. [30] demon-
strated recently that stealthy transparency is also robust
against recurrent multiple scattering. They establish a
stricter criterion for transparency, L=ls ≪ kls, in a dense
SHU disordered material composed of dipolar point scat-
terers. While transparency is retained under this condition it
also implies that the transition at νc is not sharp but system
size dependent. From a theoretical evaluation of σsðνÞ for
our ε ¼ 36 cylinders in air, however, we find that only for
ν < 1 GHz the condition L=ls < kls is met (see the
Supplemental Material [16], Sec. I). The experimental
results, however, suggest that the condition set by
Leseur et al. [30] is too restrictive and transparency remains
a robust feature for ν < νc in our dense, high index SHU
materials, even for kls ≲ 1 (see also Fig. S7 [16]).
For frequencies ν > νc transparency is clearly lost and

we observe scattering and wave diffusion. The modes
become disordered, Fig. 3(b), and the propagating wave-
fronts in the time domain are highly distorted signaling

mean free paths smaller than the system size, Fig. 3(g). A
closer inspection of the propagating wave fronts (Fig. S7
[16]) illustrates how the onset of scattering and wave
diffusion is shifted to higher frequencies νcðχÞ ∝ ffiffiffi

χ
p

as
the system becomes more and more stealthy. At frequencies
close to the first band gap, we observe spatially loca-
lized modes as shown in Figs. 3(c) and 3(d) [15,31,32]. In
the time domain, we find that, at longer times, the wave
stays localized near the central antenna, as shown in the
panels framed red in Figs. 3(h) and 3(i) and in the
corresponding Supplemental Material [16], Videos S6-4
and S6-6. We note that the modes below the band gap are
localized on the dielectric cylinders, Fig. 3(c), and the
modes above the band gap are localized in air, Fig. 3(d). For
frequencies in between the first and the second band gap we
again observe diffusive modes, Fig. 3(e), as well as
extended waves at later times, Fig. 3(j). For frequencies
in the band gaps we find no modes, all positions are phase
coherent and there is no propagation.
Next, we calculate the Thouless conductance

gTh ¼ δν=Δν, which is a fundamental localization param-
eter [33–35]. Thouless argued that in the Anderson locali-
zation regime, the dimensionless ratio gTh ¼ δν=Δν falls
below unity. In this case, the spectral widths δν of the
modes are smaller than their spacing Δν, and the modes are
isolated [33]. In the opposite limit, for gTh ≥ 1 modes
overlap and waves can propagate. By calculating the
average width of the modes in each frequency bin,
Fig. 2, we extract the mean Thouless conductance for each
frequency bin as shown in Fig. 4. We have marked the data
points directly at the band edges by open circles in Fig. 4.
Note that, due to the discretization, their values can be
affected by the zeroes of the DOS in the gap. Inside the
band gap there are no modes and hgThi is not defined. We

FIG. 4. Thouless conductance for different degrees of stealthy
hyperuniformity χ between 0.15 and 0.40. The curves are shifted
by a factor 10 for clarity. The hatched areas show the width of the
experimentally observed band gaps for each value of χ using the
same colors.
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find values of hgThi ∼ 1 everywhere except in the vicinity
of the gap where hgThi drops by up to two orders of
magnitude, signaling localization. This result is consistent
with both the finite spatial extension of the modes we
observe experimentally, see Figs. 3(c) and 3(d), and the
localization of the propagating wave in the same frequency
domain, Figs. 3(h) and 3(i). In the low-frequency regime,
the Thouless conductance is close to one, and wave
transport expands over the whole system size.
In conclusion, we show experimentally that disordered

dielectric structures display different characteristic trans-
port regimes such as transparency, photon diffusion,
Anderson localization, as well as first and even second
order band gaps. We rationalize our findings by analyzing
the mode structure and the propagation of waves in the time
domain. We find evidence that transparency is robust
against recurrent multiple scattering, and that the stealthy
materials we study retain their low-frequency transparency
even for the unusually strong refractive index mismatch
between our scatterers and air

ffiffiffiffiffiffiffiffiffiffiffi

ε=εair
p ¼ 6. Our results

lend support to recent numerical predictions and shed
new light on the interplay between disorder and
correlations [10]. We believe this will have significant
consequences for the design of photonic materials, such as
two-dimensional nanostructured materials for light harvest-
ing in solar cells [36] or light guiding in all-optical circuit
applications [37].
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