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We establish exact relations between the winding of “energy” (eigenvalue of Hamiltonian) on the
complex plane as momentum traverses the Brillouin zone with periodic boundary condition, and the
presence of “skin modes” with open boundary conditions in non-Hermitian systems. We show that the
nonzero winding with respect to any complex reference energy leads to the presence of skin modes, and
vice versa. We also show that both the nonzero winding and the presence of skin modes share the common
physical origin that is the nonvanishing current through the system.
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Introduction.—Some systems that are coupled to energy
or particle sources or drains, or driven by external fields,
can be effectively modeled Hamiltonians having non-
Hermitian terms [1–9]. For example, one may add a
diagonal imaginary part in a band Hamiltonian for elec-
trons to represent the effect of finite quasiparticle lifetime
[10–13]. One may also introduce an imaginary part to
the dielectric constant in Maxwell equations to represent
metallic conductivity in a photonic crystal [14–20]. As non-
Hermitian operators in general have complex eigenvalues,
the eigenfunctions of Schrödinger equations are no longer
static, but decay or increase exponentially in amplitude
with time [21,22].
A topic in recent condensed-matter research is the study

of topological properties in band structures, which are
generally given by the wave functions, not the energy, of
all occupied bands (or more generally, a group of bands
capped from above and below by finite energy gaps)
[23–27]. The topological band theory has been extended
to non-Hermitian systems and further developed in recent
years [28–31]. In non-Hermitian systems, obviously, one
immediately identifies a different type of topological
numbers in bands, given by the phase winding of the
“energy” (eigenvalue of Hamiltonian), not the wave func-
tions, in the Brillouin zone (BZ) [32]. This winding
number, together with several closely related winding
numbers if other symmetries are present, give topological
classification that is richer than that of their Hermitian
counterparts [22,30,33–36]. Besides winding in energy in
the complex plane, another unique phenomenon recently
proposed in non-Hermitian systems is the non-Hermitian
skin effect in open-boundary systems [36–54], which has
also been verified experimentally [55–58], and a simple
example of skin modes can be seen in the Supplemental

Material, Sec. I [59]. A typical spectrum of an open
Hermitian system consists of a large number of bulk states,
and, if at all, a small number of edge states, and as the
system increases in size L, the numbers of the bulk and of
the edge states increase as Ld and Ld−n, respectively, where
d is the dimension and 0 < n ≤ d. However, in certain non-
Hermitian systems, a finite fraction, if not all, of eigenstates
are concentrated on one of the edges. These non-Hermitian
skin modes decay exponentially away from the edges just
like edge states, but their number scales as the volume (Ld),
rather than the area, of the system [62].
In this Letter, we show an exact relation between the new

quantum number, i.e., the winding number of energy with
periodic boundary, and the existence of skin modes with
open boundary, for any one-band model in one dimension.
To do this, we first extend the one-band Hamiltonian with
finite-range hopping HðkÞ to a holomorphic function
HðzÞ ¼ PnþmðzÞ=zm (n;m > 0) [63], where PnþmðzÞ is a
(nþm) polynomial, and the Brillouin zone maps to unit
circle jzj ¼ 1 (or z ¼ eik). The image of the unit circle
under HðzÞ is the spectrum of the system with periodic
boundary, and generally, it forms a loop on the complex
plane, LBZ ∈ C. Then we show that as long as LBZ has
finite interior, or roughly speaking encloses a finite area,
skin modes appear as eigenstates with open boundary
conditions; but when LBZ collapses into a curve having
no interior on the complex plane, the skin modes disappear.
In other words, skin modes with open boundary appear if
and only if there is Eb ∈ C with respect to which LBZ has
nonzero winding. Finally, we show that the winding of the
periodic boundary spectrum, and hence the presence of
skin modes with open boundary, are related to the total
persistent current of the system. We prove that if the current
vanishes for all possible state distribution functions
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nðH;H�Þ, the winding and the skin modes also vanish, and
vice versa. The relations we establish among nonzero
winding, presence of skin modes, and nonvanishing current
are summarized in Fig. 1. Some of the results are extended
to 1D models with multiple bands.
Hamiltonian as a holomorphic function.—We start with

an arbitrary one-band tight-binding Hamiltonian in one
dimension, only requiring that hoppings between i and j
sites only exist within a finite range −m ≤ i − j ≤ n.

H ¼
X
i;j

ti−jjiihjj ¼
X
k∈BZ

HðkÞjkihkj; ð1Þ

where HðkÞ ¼ P
r¼−m;…;n trðeikÞr is the Fourier trans-

formed tr (t0 being understood as the on-site potential).
For periodic boundary condition, we have 0 ≤ k < 2π, and
eik moves along the unit circle on the complex plane. For
future purposes, we define z ≔ eik, and consider z as a
general point on the complex plane. Therefore for each
Hamiltonian HðkÞ, we now have a holomorphic function

HðzÞ ¼ t−mz−m þ � � � þ tnzn ¼
PmþnðzÞ

zm
; ð2Þ

where PmþnðzÞ is a polynomial of order mþ n. HðzÞ has
one composite pole at z ¼ 0, the order of which is m, and
has mþ n zeros, i.e., the zeros of the (mþ n) polynomial.
Along any oriented loop C and any given reference point
Eb ∈ C, one can define the winding number of HðzÞ

wC;Eb
≔

1

2π

I
C

d
dz

arg½HðzÞ − Eb�dz: ð3Þ

Specially, for C ¼ BZ, wC;Eb
is the winding of the phase of

HðzÞ − Eb along BZ, considered as a new topological
number unique to non-Hermitian systems [22,30,32–
36,64]. The Cauchy principle relates the winding number
of any complex function fðzÞ to the total number of zeros
and poles enclosed in C, that is,

wC;Eb
¼ Nzeros − Npoles; ð4Þ

where Nzeros; poles is the counting of zeros (poles) weighted
by respective orders. See Figs. 2(a),(b) for the pole, the
zeros, and the winding ofLBZ for a specific Hamiltonian. In
fact, we always have Npoles ¼ m, so that the winding
number is determined by the number of zeros of PmþnðzÞ −
zmEb that lie within the unit circle. As we will see later, the
advantage of extending the Hamiltonian into a holomorphic
function lies in exactly this relation between the winding
numbers and the zeros.
Generalized Brillouin zone.—In Refs. [36,38,42], it is

shown that the energy spectrum of certain non-Hermitian
systems with open boundary may deviate drastically from
that with periodic boundary, due to the presence of skin
modes [38–40]. Furthermore, in Refs. [38,65], the authors
introduce a new concept of the generalized Brillouin zone
to signify the difference between the periodic and open
boundary: instead of evaluating HðzÞ along BZ, the open-
boundary energy spectrum is recovered as one evaluates
HðzÞ on another closed loop called GBZ as L goes to
infinity. The GBZ is determined by the equation

GBZ ≔ fzjjH−1
m ½HðzÞ�j ¼ jH−1

mþ1½HðzÞ�jg; ð5Þ

where H−1
i ðEÞ’s satisfying jH−1

i ðEÞj ≤ jH−1
iþ1ðEÞj are the

mþ n branches of the inverse function of HðzÞ. (In
Ref. [65], m ¼ n is assumed, and we extend the results
to m ≠ n cases in the Supplemental Material, Sec. II [59].)
We emphasize that using GBZ, one can compute the open
boundary spectrum of systems of large or infinite size
by solving some algebraic equations such as Eq. (5), a
process we sketch using the following steps. To begin with,
one finds the inverse functions of HðzÞ, and orders them
in ascending amplitude, thus obtaining H−1

i ðEÞ, where
i ¼ 1;…; mþ n because the PmþnðzÞ − Ezm is an order
mþ n polynomial of z. Then, as there are two variables
½ReðEÞ; ImðEÞ� in Eq. (5), by codimension counting its
solution on the complex plane forms one or several close
loops, which are nothing but the open boundary energy
spectrum. Finally, one substitutes these solutions back into
H−1

m ðEÞ. It is noted that if we are only interested in the
spectrum, we may stop at the second last step, but we need
GBZ in order to articulate some of our key results.
With GBZ thus defined, we state our central result (for

proof see the Supplemental Material, Sec. III [59]): GBZ is
the closed curve in the complex plane that encloses the pole
(at the origin) of orderm and exactly m zeros of PmþnðzÞ −
Ezm for arbitrary E ∈ C [66]. This seemingly technical
result has the following consequences. First, this means
within GBZ the total number of zeros and poles (weighted
by respective orders) cancels, so that the winding ofHðzÞ −
E vanishes. Next, the arbitrariness of E ensures that GBZ is
invariant under a shift of energy origin in the complex plane
HðzÞ → Hz − Eb. Combining these two points, we see that

FIG. 1. The reciprocal relations among the three phenomena
unique to non-Hermitian systems: the nonvanishing persistent
current, nonzero winding number of energy, and the presence of
skin modes. The validity of any one is the sufficient and necessary
condition for the validity of the other two.
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the image of GBZ under HðzÞ on the complex plane,
denoted by LGBZ, has zero winding with respect to any
Eb ∈ C, or symbolically,

wGBZ;Eb
¼ 0; ð6Þ

where the orientation of GBZ is defined in the
Supplemental Material, Sec. III [59]. Therefore, we finally
see that the open-boundary spectrum of HðzÞ cannot be a

circle or eclipse like the periodic-boundary counterpart, and
it cannot even form a loop enclosing any finite area,
because in that case one can choose Eb inside that area
so that the winding of LGBZ with respect to Eb is nonzero.
The only possibility is that LGBZ collapses into an arc as
shown in Fig. 2(d). In this specific example (m ¼ n ¼ 1
and see caption for parameters), we plot the GBZ in
Fig. 2(c) and LGBZ in Fig. 2(d) as z moves counterclock-
wise along the GBZ. We see that while GBZ is more or less
a circle, its imageLGBZ keeps “back stepping” itself: except
for a few turning and branching points, any point in LGBZ
has two or an even number of preimages in the GBZ, so that
the end result looks like more connected segments of
curves than a closed loop.
Skin modes and nonzero winding numbers.—GBZ not

only gives the open boundary spectrum, but also yields
information on the eigenstates with open boundary [38,65].
In fact, each point z ∈ GBZ represents an eigenstate, the
wave function of which is in the form hsjψðzÞi ∝ jzjs,
where s ¼ 1;…; L labels the sites. When jzj > 1 (jzj < 1),
the wave function is concentrated near the (s ¼ 1) edge
[(s ¼ L) edge] and exponentially decays with distance
from the edge [see Figs. 3(a3),(b3),(c3) for examples].
Therefore, any part of the GBZ that lies within (without) the
unit circle corresponds to a set of skin modes. In extreme
cases, when the entire GBZ is inside (outside) the unit
circle, all eigenstates are skin modes on the left (right) side
of the chain. In short, any deviation of GBZ from BZ
signifies the existence of skin modes.
For a given HðzÞ, if wBZ;Eb

≠ 0, then from Eq. (6) we
have wGBZ;Eb

¼ 0, hence GBZ must deviate from the unit
circle, that is, skin modes must exist with open boundary.
Let us now try to prove the inverse statement: if GBZ and
BZ differ from each other, then one can always find a Eb ∈
C such that wBZ;Eb

≠ 0. GBZ and BZ may differ from each
other in three typical ways: (i) as in Fig. 3(a1), GBZ
contains the unit circle, and we define U as the region

(a)

(c) (d)

(b)

FIG. 2. We show the BZ (a) with periodic-boundary spectrum
(b), and GBZ (c) with open boundary spectrum (d) for the model
HðzÞ ¼ ½2iz2 þ ð3þ iÞzþ 1�=z, and the red dot E0 ¼ Hðz ¼
aÞ ¼ Hðz ¼ bÞ ¼ 3 is the reference energy with respect to which
winding is defined. In (a),(c) the red dots represent the zeros of
HðzÞ − E0 ¼ 0, and the cross denotes the pole. We remark that
the orientation of GBZ in (c) is arbitrarily chosen.

(a1)

(a3)

(a2) (b1)

(b3)

(b2) (c1) (c2)

(c3)

FIG. 3. BZ and GBZ, periodic- and open-boundary spectra, and all normalized eigenfunctions for open boundary are plotted for
HðzÞ ¼ z−2=5þ 3z−1 þ 2z in (a1)–(a3), HðzÞ ¼ z−2=5þ z−1 þ 2z in (b1)–(b3), and HðzÞ ¼ 2z−2=5þ z−1 þ z in (c1)–(c3). The
regions inside BZ (GBZ) and outside GBZ (BZ) are colored in blue (red), and the eigenfunctions corresponding to points on GBZ
outside (inside) BZ are plotted as red (blue) curves. z0; z00 are randomly chosen points in the red and the blue regions, respectively, and
E0 ¼ Hðz0Þ, E0

0 ¼ Hðz00Þ.
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inside GBZ but outside BZ (colored in red); (ii) as in Fig. 3
(b1), GBZ is contained in the unit circle, and we define V as
the region outside GBZ but inside BZ (colored in blue);
(iii) as in Fig. 3(c1), one part of GBZ is outside and another
part inside the unit circle. For case (i), pick z0 ∈ U and
E0 ¼ Hðz0Þ. z0 is then a zero of Hðz0Þ − E0, and from
Eq. (6), we know there are exactly m zeros inside GBZ,
so inside BZ there are at mostm − 1 zeros, and from Eq. (4)
we have wBZ;E0

< −1 ≠ 0 [see example in Fig. 3(a2)].
For case (ii), pick z00 ∈ V and E0

0 ¼ Hðz00Þ, then use
similar arguments to see wBZ;E0

0
> 1 ≠ 0 [see example in

Fig. 3(b2)]. We postpone the proof for case (iii) to the
Supplemental Material, Sec. IV [59], but mention here that
for z0 ∈ U and z00 ∈ V, the periodic-boundary spectrum
LBZ, taking the shape of a fish [see Fig. 3(c2)], has opposite
windings with respect to E0 and E0

0.
Winding numbers, skin modes, and persistent current.—

From the above results,we see that if and only ifLBZ does not
enclose any Eb ∈ C, then the skin modes do not exist. When
this is the case,LBZ always back steps itself just likeLGBZ, or
more precisely, along LBZ, for any small segment δH
centered at some E, there must be another segment −δH
centered at exactly the sameE. What is the physical meaning
of this condition? We show that this is equivalent to the
absence of total persistent current with periodic boundary. To
define the current, we assume that the particles have some
charge (taken to be unity), so the total persistent current can
be derived as J ¼ P

k nkvk ¼
P

k nkH
0ðkÞdk, where nk is

some distribution function [67]. Now we make a general
physical assumption that nk only depends on the energy of
the state, that isnk ¼ n½HðkÞ; H�ðkÞ�, but does not dependon
k explicitly. [Here n depends on both the real and the
imaginary parts of HðkÞ, so is unnecessarily holomorphic.]
For example, the Bose distribution nk ¼ ðeRe½HðkÞ�=kBT −
1Þ−1 satisfies such a condition. When the curve LBZ has
no interior, we have

J¼
Z

2π

0

nðH;H�ÞdHðkÞ
dk

dk¼
I
LBZ

nðH;H�ÞdH¼ 0; ð7Þ

that is, the total persistent current vanishes. In the
Supplemental Material, Sec. V [59], we prove the inverse
statement that if there is any Eb ∈ C with respect to which
HðzÞ has nonzero winding, then one can always find some
nðH;H�Þ ≠ 0 such that J ≠ 0. This equivalence is intuitively
understood: if a persistent current is going around a ring, then
as one cuts open the ring, the charge starts concentrating on
one end of the open chain. This persistent current is a linear
response and vanish for any Hermitian system, which is
proved in the Supplemental Material, Sec. VI [59].
Discussion and conclusion.—So far we have esta-

blished the reciprocal relations shown in Fig. 1 for the
one-band model in one dimension. Some of the results
may be extended to the cases of more bands and/or
higher dimensions. For example, in d dimension, one

should consider a multivariable holomorphic function
Hðz1; z2;…; zdÞ∶Cd → C, where zj ≔ eikj , and the spec-
trum of Hðz1;…; zdÞ is in general a continuum on the
complex plane. Are there skin modes when we have open
boundary along 0 < l ≤ d directions, but periodic boun-
dary along the other d − l directions? We have two
conjectures for two extreme cases: (i) if l ¼ d, that is, if
all directions are open, skin modes vanish if and only if
each component persistent current vanishes for arbitrary
nðH;H�Þ; and (ii) if l ¼ 1, that is, if only one direction is
open, the skin modes vanish if and only if the entire spectra
of Hðz1;…; zdÞ collapse into a curve having no interior.
The “only if” part of (i) and the “if” part of (ii) are only
obvious, but the other parts seem not quite so.
Extension of the relation between the persistent current

and the winding numbers in periodic boundary to multiple-
band systems is straightforward. Now HabðzÞ becomes a
matrix function of z ≔ eik, where a; b ¼ 1;…; n label the
orbitals. The persistent current in this case becomes
J ¼ Trðρ̂ ĴÞ ¼ P

i¼1;…;n Ji, where

Ji ¼
Z

2π

0

nðEi; E�
i Þ
dEi;k

dk
¼

I
Li;BZ

nðEi; E�
i ÞdEi: ð8Þ

The operators ρ̂ and Ĵ are steady-state density matrix
operator and current operator, expressed as, respectively,
ρ̂ ¼ P

i;k nðEi;k; E�
i;kÞjiRk ihiLk j and Ĵ ¼ P

k;a;b dHabðkÞ=
dkjakihbkj. More details of derivation can be found in
the Supplemental Material, Sec. VI [59]. While Ji ¼ 0
implies J ¼ 0, J ¼ 0 does not necessitate Ji ¼ 0 for each i.
In fact, one part of the trajectory of EiðkÞ may be back
stepped by another part of the trajectory of Ej≠iðkÞ so that
their contribution to J cancel out. Therefore, J ¼ 0 is
equivalent to the collapse of the spectrum, not of each
individual band, but of all bands, into a curve that has no
interior. In more precise terms, J ¼ 0 for arbitrary nðE;E�Þ
if and only if for any Eb ∈ C and Eb ∉ Li;BZ, the total
winding number of all bands with respect to Eb vanishes, or
symbolically

1

2πi

Z
2π

0

d log det½HðzÞ − EbIn×n�
dk

dk ¼ 0: ð9Þ

When there are additional conserved charges in the
Hamiltonian, for example, some spin component, we can
simply replace the total current J with the component current
for each conserved charge Jc. At this point, we do not know
exactly how the nonzero persistent current or the winding
numbers are related to the skin modes in multiband systems,
but from physical intuition, we conjecture that J ≠ 0 implies
skin modes with open boundary, and vice versa.
In summary, we theoretically demonstrate that a one-

dimensional non-Hermitian Hamiltonian with open boun-
dary condition has a non-Hermitian skin effect as long as
the complex energy spectrum of the same Hamiltonian
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under periodic boundary condition makes a loop having
nonzero area in the complex plane. The vanishing non-
Hermitian skin effect is also related to the vanishing
persistent current for an arbitrary density matrix of a steady
state.
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