
 

Large Polarons as Key Quasiparticles in SrTiO3 and SrTiO3-Based Heterostructures
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Despite its simple structure and low degree of electronic correlation, SrTiO3 (STO) features collective
phenomena linked to charge transport and, ultimately, superconductivity, that are not yet fully explained.
Thus, a better insight into the nature of the quasiparticles shaping the electronic and conduction properties
of STO is needed. We studied the low-energy excitations of bulk STO and of the LaAlO3=SrTiO3 two-
dimensional electron gas (2DEG) by Ti L3 edge resonant inelastic x-ray scattering. In all samples, we find
the hallmark of polarons in the form of intense ddþ phonon excitations, and a decrease of the LO3-mode
electron-phonon coupling when going from insulating to highly conducting STO single crystals and
heterostructures. Both results are attributed to the dynamic screening of the large polaron self-induced
polarization, showing that the low-temperature physics of STO and STO-based 2DEGs is dominated by
large polaron quasiparticles.

DOI: 10.1103/PhysRevLett.125.126401

After the discovery of a high mobility and supe-
rconducting two-dimensional electron gas (2DEG) at
the LaAlO3=SrTiO3 (LAO/STO) interface [1,2], and of
high-Tc superconductivity in CaCuO2=SrTiO3 [3] and
FeSe=SrTiO3 [4–6] bilayers, work on bulk and surface
electronic properties of STO received renewed interest.
Despite a simple band structure, the normal and super-
conducting properties of STO and STO-based heterostruc-
tures are not yet fully understood. In the bulk, the 3d-Ti t2g
(3dxy, 3dxz, 3dyz) manifold [Fig. 1(a)] forms three upper-
most bands characterized by heavy and light effective
masses along the primitive lattice vectors [7,8]. Spin-orbit
coupling (SOC) removes the degeneracy, and the sixfold t2g
bands are split by about 30 meV in a Γþ

7 doublet and a Γþ
8

quartet [8]. These new bands, formed by the mixing of
atomic 3d-Ti t2g states, still partially retain their overall
orbital character [Fig. 1(a)]. The band hierarchy is reversed,
due to confinement, in the 2DEG at the (001) LAO/STO
interface [9,10], where bands with prevalent 3dxy orbital
character are lower in energy.
Optical spectroscopy [11], transport studies [12], and

angle-resolved photoemission (ARPES) [13] on Nb-doped
STO showed that the carrier effective mass is usually larger

than the free electron value and decreases with doping,
reaching the nonrenormalized value only at electron density
n3D ≫ 1020 cm−3. Rather than by band filling, this pheno-
menon was attributed to the coupling of electrons to optical
phonon modes, which results in the formation of large
polarons [14]. Although most of the features observed in
the optical conductivity spectra can be explained by a large
polaron model [14,15], there is still no consensus about the
type of quasiparticle effectively determining the electronic
properties of doped STO and the mechanism of super-
conductivity. Several models were proposed, including
pairing mediated by optical phonons [16,17], condensation
of large polarons [18], or other exotic pairings in a Fermi
liquid, such as the recent proposal of superconductivity
mediated by ferroelectric fluctuations [19].
Here, we use high-resolution Ti L3 edge resonant

inelastic x-ray scattering (RIXS) to probe elementary
low-energy excitations in insulating and conducting STO
and LAO/STO heterostructures. We find that the electron-
phonon coupling (EPC) to the longitudinal ∼100 meV
optical phonon mode, LO3, decreases as a function of the
carrier density for both t2g and eg electrons. More impor-
tantly, we observe a ∼130 meV composite excitation
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assigned to an intra-t2g dd transition accompanied by the
emission of a LO3 phonon, providing evidence of large
polaron quasiparticles in bulk STO and in the LAO/
STO 2DEG.
RIXS spectra were measured at the beam line ID32 of the

European Synchrotron Radiation Facility with the ERIXS
setup [20]. The energy resolution, ≲35 meV (full width
half maximum) as estimated from the nonresonant scatter-
ing by the silver contacts on the samples, was about 3 times
better than in previous studies of Ti oxides [21–24],
allowing a much deeper analysis of the results. We studied
four types of samples with different carrier density, namely
insulating and conducting STO single crystals, LAO/STO
bilayers, and a LAO/STO multilayer (LAO/STO ML)
composed by eight repetitions of a LAO(10 unit cells)/
STO(10 unit cells) bilayer (see Table I and the
Supplemental Material [25] for details). Following
Ref. [33], the volume carrier densities n3D of the LAO/
STO samples were obtained from the measured 2D carrier
density n2D by considering the 2DEG effective thickness at
the interface to be d ¼ 8.5� 1.5 nm, equal to the average
of the experimental values reported in Refs. [33,34]. The
RIXS spectra were acquired at 20 K excited at selected
photon energies across the Ti L3 edge and labeled A3; B0

(1.6 eV above A3), and B1 as shown in Fig. 1(b). In a
simplified scenario for a Ti4þ ion in 3d0 configuration, the
A3 and B1 absorption peaks correspond to the excitation of
a 2p3=2 core electron into a 3d state of t2g and eg symmetry,
respectively. The B0 energy, apparently at the bottom of a
valley in the absorption spectrum of STO, corresponds to a
peak for a Ti3þ ion in 3d1 configuration [9,10]. The
incident photon polarization was perpendicular to the
scattering plane (σ-pol) and the scattering angle 149.5°,
at grazing incidence on the sample surface, corresponding
to the ð−0.2; 0; 0.2Þ point in the reciprocal lattice.
A typical RIXS spectrum at B1 consists of a broad CT

band between 4 and 14 eV, a very narrow peak around 2.5 eV
due to interband dd transitions, and low-energy excitations,
such as phonons, near the elastic peak [Figs. 1(c) and 1(d)].
The dd feature around 2.5 eV is observed in all the samples,
even in the (nominally) undoped and insulating STO bulk
single crystal, suggesting the presence of some 3d1 (Ti3þ)
electrons [35]. The shape and relative intensities of the dd
excitation and the CT peaks for the insulating STO spectra
are very well reproduced byRIXS cross section calculations,
based on the Bethe-Salpeter equation (BSE) [36], that
consider both 3d0 and 3d1 contributions in a 20 to 1 ratio.
In order to evaluate the role of SOC on the multiplet spectra,
we used atomic multiplet calculations assuming the same
fraction of 3d1 [Fig. 1(d)], which predicts an additional intra-
t2g dd peak around 30 meVenergy loss, but no other feature
up to 2.5 eV (see Ref. [25]).
Figure 2 shows typical low-energy loss RIXS data on

insulating and conducting bulk STO for excitations at the
A3, B0, and B1 energies. Three main features can be
identified in the A3 and B1 spectra [Fig. 2(d)]: at low,
intermediate, and high energies of 25–30 (ω1), 55–65 (ω2),
and 90–100 meV (ω3), respectively. As shown in Fig. 2(e),
where we report the computed data of Ref. [37], these
energies match the phonon branches of longitudinal (trans-
verse) optical modes, namely LO1 (TO2), LO2 (TO3), and
LO3 [38,39]. Besides the three main phonon peaks, several
additional higher-energy features are visible in the data,
some of them occurring at multiples of ω3 (∼200 and
300 meV), which correspond to two- and three- LO3
phonon replicas. Moreover, in the spectra at B1 and at
B0, an additional particularly strong peak is visible around
125–135 meV in both insulating and conducting samples.

FIG. 1. Overview of x-ray absorption spectroscopy (XAS) and
RIXS spectra: (a) Electronic structure of bulk STO derived from
tight binding calculations [8] without (dashed black line) and
with SOC (blue lines, Γþ

8 quartet, red Γþ
7 doublet). (b) XAS

spectra on conducting bulk STO. (c) RIXS spectra at B1,
normalized to the maximum of the charge transfer (CT) peak,
for insulating STO (black line) and LAO/STO bilayer (blue line).
The filled red shaded region is the calculated RIXS spectra using
a BSE approach reproducing both dd (peak around 2.5 eV) and
CT excitations. (d) Expanded view of the (left) low- and (right)
midenergy regions, and atomic multiplet calculations including
spin orbit interaction, which show the additional intra-t2g dd peak
around 30 meV.

TABLE I. Summary of the sample types studied in this Letter
and their 10 K carrier density and resistivity.

Sample n3D (cm−3) ρ (mΩcm)

STO insulating < 1015 > 105

STO conducting 5 × 1019 0.2
LAO/STO bilayer 2–4 × 1019 0.4–0.5
LAO/STO multilayer 0.5–1 × 1021 0.01
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The data show strong differences in the low-energy
spectra at A3 and B1, where phonons are expected to
couple mainly to the t2g and eg electrons, respectively. In
order to determine the t2g and eg coupling strengths (gt2g
and geg , respectively), it is necessary to take into account

that the A3 (B1) XAS peak has not a pure 2p53dt12g
(2p53de1g) character, but rather contains an approximate
25%mixing of eg (t2g) orbital character [39,40]. Because of
the above points, we performed simultaneous constrained
fits of the A3 and B1 RIXS spectra, employing a three-
mode generalization of the Franck-Condon model [41]. The
model, described in detail in Refs. [25,42], considers
intermediate and final states containing not only multiples
of a single mode but also mixed-mode double excitations.
The Ti 2p core-hole lifetime Γ was fixed to 110 meV
(HWHM) for both A3 and B1 spectra [43] (see Ref. [25] for
an analysis of the Ti 2p core-hole lifetime).
In Figs. 3(a)–3(d) we show the fits at A3 and B1 for

insulating bulk STO and a LAO/STO bilayer (other data fit

on different samples and a complete list of the fitting
parameters are shown in Supplemental Material [25]). We
underline that most of the spectral weight above 100 meV
and the very long tail in the data (extending above 0.5 eV)
cannot be reproduced without considering phonon mixed
excitations [25]. This indicates the importance of using a
mixed phonon model for a better fitting when two or more
phonons have comparable electron-phonon coupling and
energies. We find geg > gt2g as a consequence of the larger
spatial overlap of eg orbitals with neighboring oxygen 2p
states leading to σ bonds with respect to the π bond forming
t2g states. In Fig. 3(e), we show the LO3 electron-phonon
coupling obtained from our RIXS data as function of the

FIG. 2. Low-energy excitation RIXS spectra: (a) XAS spectrum
around Ti L3 edge of STO. (b),(c) RIXS data as function of
incoming photon energy along the XAS Ti L3 absorption edge for
bulk (b) insulating and (c) conducting STO. For each energy, we
show the raw scatter data, the elastic peak fit (black lines), and a 2
points fast Fourier transform (FFT) smoothing of the raw (short
dashed lines) and elastic contribution subtracted data (solid lines).
Different colors correspond to different photon energies, namely
A3 (blue), B0 (red), and B1 (dark blue) (from top to bottom). The
elastic peak has been determined by fixing the instrumental
resolution from reference spectra on silver. (d) 2 points FFT
smoothed raw (dashed lines) and elastic subtracted (solid lines)
data at A3 (blue) and B1 (dark blue) for the STO insulating
sample. Dashed horizontal lines indicate the three main phonon
peaks compared to (e) tabulated STO phonon dispersions [37].

FIG. 3. Fit of the RIXS spectra. Comparison between RIXS
data (black circles) of insulating STO [(a),(b)] and conducting
LAO/STO [(c),(d)] and their fit at A3 (upper) and B1 (lower).
Black lines are 2 point FFT smoothing of the data. Blue lines are
the fit using the phonon mixing model. Red lines are the fit
including the intra-t2g dd plus LO3 phonon RIXS cross section of
Eq. (1). (e) LO3 gðt2gÞ (red triangles) and gðegÞ (blue triangles)
EPC estimated from the analysis of the RIXS data at A3 and B1 as
function of the carrier density n3D. The results are compared to
data from Refs. [38,44,45]. The n3D error bars for 2DEGs data are
determined from the 2DEG thickness uncertainty. The shaded
gray area is a break in the horizontal axis between 2 × 1016 and
8 × 1018 cm−3. The inset shows gðA3Þ as function of n3D for all
the samples studied. n1 and n2 designate different samples of the
same type. Dashed lines are guides for eyes.
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volume carrier density reported in Table I and other
experimental data collected from literature [38,44,45]. In
order to compare bulk and 2DEGs data, we assigned a
doping of 1 × 1015 cm−3 to the insulating STO, while n3D
for LAO/STO [38] and STO [45] 2DEGs is obtained from
the reported n2D using the value d ¼ 8.5� 1.5 nm for the
2DEG thickness. The analysis shows that the LO3 gt2g EPC
found by RIXS is in reasonable quantitative agreement with
ARPES data reported on LAO/STO [38] and STO [45]
samples with similar doping, and that it decreases as
function of the carrier density, a result consistent with
the dynamical screening of large polaron quasiparticles self
polarization. This trend is confirmed in the carrier density
dependence of the LO3 EPC determined from the fit of the
RIXS spectra at A3 on all the STO and LAO/STO samples
[see inset of Fig. 3(e)]. In particular, in the LAO/STO
multilayer that hosts the highest carrier density among our
samples, we obtain gðA3Þ ≃ 0.4, consistent with the bare
undressed EPC of doped STO.
Although of fairly good quality for the general features,

the fitting cannot account for the extra peak measured at
∼130 meV in the B0 and B1 spectra, a feature that can even
be stronger than the single phonon features. Evidently, it
cannot be reproduced by the phonon mixing model and
cannot be assigned to a multiple phonon replica. A pure dd
excitation is also unlikely, as it would correspond to an
unseemly large energy splitting of the t2g states even in bulk
STO. On the contrary, its energy is consistent with a
composite excitation of an intra-t2g transition for electrons
in 3d1 Ti orbitals and one high-energy (90–100 meV) LO3
optical phonon. This is expected in a system where
electrons get dressed by the polar distortions of the lattice,
thus forming polarons.
In order to verify this idea, we included in the fit the

RIXS cross section from a composite dd plus LO3 (ω3)
phonon excitation given, following Ref. [46], by

d2σ
dEdΩ

¼ jTddj2
Γ2

e−gdd
X∞

n¼1

gddn

n!
δðE − Edd − nℏω3Þ; ð1Þ

where Tdd is the polarization factor corresponding to the
specific dd excitation and gdd ¼ ðMdd=ω3Þ2 is the coupling
constant, with Mdd half of the Jahn-Teller energy EJT. As
shown in Figs. 3(b)–3(d), a very satisfactory fitting of the
data is obtained by only adjusting the value of gdd and a
scaling factor [inclusive of the term jTddj2 in Eq. (1)],
without changing the phonon-related part.
A further confirmation of this analysis comes from a fit

of the B0 RIXS spectra. Here, the ∼130 meV peak is
enhanced with respect to pure phonon excitations, because
B0 is a resonant transition for 3d1 states. We are able to fit
the B0 RIXS spectra on each sample by using the same
fitting parameters as at B1 and adjusting only the relative
scaling factor for the pure phonon and the ddþ LO3

phonon composite contributions (Fig. 4). The value of gdd
obtained from the fit at B0 and at B1 is 0.35 (0.32) for
insulating (conductive) STO leads to EJT ≃ 105 meV, in
rough agreement with the theoretical estimations for STO
[39] and BaTiO3 [47]. The same analysis on the highly
doped LAO/STO multilayer, characterized by a coupling to
the LO3 mode of the order of the bare, undressed EPC
shows that at high carrier density the ∼130 meV feature is
much weaker (Fig. 4). Indeed, from the fit at B0 we get a
much smaller gdd ≃ 0.03.
While RIXS spectra in general can evolve as function of

the carrier density also due to the electron coupling,
alternative explanations of the suppression of the
∼130 meV peak with doping are unlikely. In fact, we note
that the increase of electron correlation and of the 3d
population, both resulting from higher doping, would lead
to larger, not lower, intensities of dd excitation features in
RIXS. This rules out the assignment of the peak to pure dd
excitations. On the contrary, we posit that at high carrier
densities the intra-t2g excitations do not induce anymore the
emission of LO3 phonons because their coupling to the
polar distortion of the lattice get too small. This phenom-
enology speaks strongly for the ∼130 meV peak to be a
hallmark of large polaron quasiparticles in insulating and
weakly doped STO systems.
Our results have several implications. High-resolution

RIXS spectra not only quantify trends in the EPC for
optical phonons, they also reveal polaronic excitations in
bulk STO and STO-based heterostructures, demonstrating
that RIXS can be used to study polaron physics both in
insulating and conducting materials. We note that a
∼130 meV feature was observed in optical conductivity
data of doped STO [14] and recently explained within a
large polaron model by the inclusion of the dynamical
screening of electrons from the lattice polarization [15].
The coincidence in energy position and carrier density

FIG. 4. Fit of the RIXS data at B0 (scatter data) for STO
insulating, STO conducting, and highly doped LAO/STO multi-
layer, vertically displaced for clarity. Red lines are the fitting
curves, while blue lines are 2 points FFT smoothed data.
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dependence, with a disappearance at high doping, suggests
that RIXS and optical conductivity observations have a
common origin. Furthermore, by RIXS we have shown that
the ∼130 meV peak involves dd intra-t2g transitions of 3d1

Ti3þ states, accompanied by the excitation of LO3 pho-
nons. Consequently, t2g electrons in STO form large
polaron quasiparticles. Beside confirming earlier signatures
by ARPES at the surface of STO [45], in LAO/STO [38]
and in FeSe/STO bilayers [5], our study demonstrates more
generally the emergence of large polaron physics in both
bi- and three-dimensional titanates. Finally, it emerges that
polarons are observed also in nominally undoped STO,
with a coupling constant well below the value expected for
small polarons formation. Consequently, we can infer that
even at the very low doping level, as that induced by
residual defects or by long living photodoped carriers, 3d1

electrons are dressed by long-range polar lattice distortions,
as theoretically predicted in other wide band gap materials
like LiF [48]. Future investigations and theoretical model-
ing of the normal and superconducting state of STO and
STO-based heterostructures will have to take in consid-
eration the central role of large polarons in these materials.
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