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We present a unifying description for the martensitic transformation of steel that accounts for important
experimentally observable features of the transformation, namely, the Neumann bands, the interfacial
(habit) plane between the transformed and untransformed phases and their orientation relationship. It is
obtained through a simple geometric minimization of the total distance traveled by all the atoms from the
austenite (fcc or γ) phase to the martensite (bcc or α) phase, without the need for any explicit energy
minimization. Our description unites previously proposed mechanisms but it does not rely on assumptions
and experimental knowledge regarding the shear planes and directions, or external adjustable parameters.
We show how the Kurdjumov-Sach orientation relationship between the two phases and the f225gγ habit
plane, which have both been extensively reported in experiments, naturally emerge from the distance
minimization. We also propose an explanation for the occurrence of a different orientation relationship
(Pitsch) in thin films.
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Martensite, a body centered cubic (bcc) derived meta-
stable phase of iron and carbon, often labeled α, is typically
obtained by a rapid quenching of the high temperature face-
centered cubic (fcc) austenite phase (γ). The martensitic
transformation (γ → α) is diffusionless and rapid. By virtue
of its immense technological and industrial relevance, the
mechanism behind the martensitic transformation has been
extensively studied and theorized in the past.
Bain first proposed a mechanism for the transformation by

establishing an atom-to-atom correspondence between the
bcc and fcc lattices [1]. Equivalent simple shear mechanisms
were proposed subsequently [2,3] based on the measured
orientation relationships (OR) between the martensite grains
and the residual austenite, namely, the Kurdjumov-Sachs OR
and Nishiyama-Wassermann OR. Other ORs have also been
measured [4,5], in particular the Pitsch OR commonly
observed in thin films [6–8]. These simple shear mechanisms
failed to explain the measured interfacial planes (habit
planes) between austenite and martensite as well as the
observed f112gα twinning [3,4,9–11]. To account for these
missing features the phenomenological theory of martensitic
transformation (PTMT) [4,12–17] was developed. It
assumes the existence of a plane that remains invariant
during the transformation and is a consequence of a slipping
or a twinning process. Although, the PTMT can explain
observed habit planes and ORs, it relies on experimental
information about the slipping and/or twinning process and
ad hoc adjustable parameters have to be introduced to
reconcile observed shear and habit planes. Extensive
descriptions of the PTMT and its history can be found
elsewhere [3,18,19]. Other theories were developed where

the shape and orientation of domains of martensite in the
austenite lattice can be determined by minimizing their
elastic energy [18,20,21] or by minimizing the free energy
assuming small strain (linear geometry) and a continuous
interface (Hadarmard jump) [22,23]. These theories can be
used to study the evolution of the microstructure of various
complex systems under different stress conditions and are
the basis for more elaborate models [24,25]. Yet, their
crystallographic description of the transformation mecha-
nism is equivalent to the PTMT. Others [26–31] have
recently worked on alternative crystallographic models,
but theoretical research on the subject has been mainly
focused on molecular dynamics simulations, a detailed
account of which can be found in Ref. [32].
In our own work, we start from the assumption that the

most likely transformation mechanism is the one that
requires the least displacement of all the atoms in the
crystal. This is a plausible physical assumption that was
employed by Jaswon andWheeler in their paper that lead to
the PTMT [12], in our previous work on phase trans-
formations [33,34] and in the works of others. Let us
consider the cumulative distance d1 traveled by N atoms
from austenite to martensite:

d1 ¼
Xm

l¼1

Xn=2

i;j;k¼−n=2
kvαijkl − vγijklk; ð1Þ

where vxijkl are the position vectors of atoms of the initial
austenite structure (x ¼ α) or the final martensite structure
(x ¼ γ) defined as vxijkl ¼ Cxði; j; kÞ þ px

l . Here C
x is a unit
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cell of either the martensite or the austenite, and fpx
l ∶l ¼

1…mg are the atomic positions inside Cx. The total number
of atoms in this bloc of material is N ¼ mðnþ 1Þ3. The
choice of the unit cell vectors (including their orientation in
space) and the order in which the atoms are indexed will
determine the mechanism of the transformation and its
corresponding d1. Thus, the actual mechanism of trans-
formation, according to our initial assumption, can be
characterized by the set of Cx and fpx

l ∶l ¼ 1…mg that
minimizes d1 when N → ∞. We have shown [34] that the
leading dependence of d1 on the size (N) is a function of the
distortion in the lattice, i.e., the strain. Therefore, by
minimizing d1, we also necessarily minimize the strain.
The structure matching algorithm [34] we developed

recently and applied to this problem is an iterative approach
to minimizing d1. It directly minimizes the distance
traveled by all (N) atoms belonging to a section of the
crystal that is chosen to be as large as possible (ideally
N → ∞). After minimizing d1 our algorithm retrieves the
periodicity or the scale of the transformation (Cx) if it
exists. We provide a brief description of the algorithm in the
Supplemental Material (SM) [35] and more details can be
found in Ref. [34]. A full implementation is available on
GitHub [38]. We wish to emphasize the fact that the
algorithm requires only the parameters of the initial and
final structures as inputs. It relies entirely on the principle
of minimal displacements, thus it does not directly take into
account the energetics of the transformation.
We used our distance minimization algorithm [34] to

find the transformation of pure iron from fcc to bcc. For
austenite, we used the lattice constant aγ ¼ 3.57 Å. For
martensite we use both the hard-sphere packing lattice
constant [26,39] (aα ¼

ffiffiffiffiffiffiffiffi
2=3

p
aγ ¼ 2.915 Å) and the

experimentally measured lattice constant aα ¼ 2.87 Å
and applied our algorithm to both choices. It is important
to note that the lattice parameters themselves depend on the
chemical element forming the crystal and that different
elements have different lattice parameters which, in turn,
lead to a different transformation mechanism.
Figure 1 shows the transformation mechanism that

minimizes d1 resulting from our structure matching
algorithm. The optimal Cγ and Cα with their atomic
positions are illustrated in panels (a) and (b), respectively.
From the ½110�γk½1̄11�α perspective [blue frame in panel
(c)], going from fcc to bcc, one can see an elongation in the
½001�γk½1̄ 1̄ 0�α (green arrow) direction; it is particularly
noticeable by looking at the change in shape of the
fcc conventional cell in black. Now, looking in the
½001�γk½1̄ 1̄ 0�α direction (green frame), the transformation
includes a shear of the ð11̄0Þγkð11̄2Þα plane in the
½110�γk½1̄11�α direction with a slip every sixth layer. The
initial and final cells are linked by a transformation matrix
T such that TCγðγÞ ¼ CαðγÞ called the deformation gradient
matrix (the exponent in parentheses indicates the basis).
The matrix T does not fully describe the transition because

it does not account for the displacement of the atoms inside
the cell. Indeed, from panel (a) to panel (b) in Fig. 1, not
only the cells have been distorted, but the atoms
inside them have been displaced. This is why we find a
mechanism of lower total atomic displacement then the
Bain path despite the fact that it is optimal when consid-
ering only lattice deformation [30]. An animation of the
transformation from the same viewing directions as in
Fig. 1 and the evolution of the simulated x-ray diffraction
patterns [40] along the transformation are provided in SM
[35] together with the crystal structures (POSCAR format)
for 60 snapshots along the transformation for both possible
orientation relationships (explained further in the text).
Let us first analyze the deformation gradient matrix T.

According to the polar decomposition theorem, it can

(a)

(b)

(c)

FIG. 1. Transformation cells of (a) austenite Cγ and (b) mar-
tensite Cα are shown together with the atoms labeled according to
the atom-to-atom correspondence between the two structures.
The light gray atoms show the conventional cells. Panel (c) shows
the evolution of the structure in five steps during the trans-
formation from two different projections. In each image, the bcc
conventional cell is represented in blue and the fcc conventional
cell in black. In the ½1̄ 1̄ 0�α projection (green), one row of atoms is
represented in black to help visualize the slipping process.
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always be written as T ¼ RU where R is a rotation (unitary)
matrix and U is a symmetric matrix [41]. Consequently
U − I is a proper strain tensor and its eigenvalues and
eigenvectors are the principal strains and directions of the
transformation. The eigenvalues of U are the square
roots of the eigenvalues of TTT and their eigenvectors
are the same. Our structure matching algorithm [34]
gives us the optimal T directly, from which one gets
U ¼ Pdiagðλ1; λ2; λ3ÞPT , where the columns of P are the
eigenvectors of U in the basis of the fcc conventional cell.
Similarly, in the basis of the bcc lattice going from bcc to
fcc, the eigenvalues are inverse and the eigenvectors form a
different matrix Q. The principal strains λi − 1 are
2

ffiffiffi
2

p
=3 − 1 ≈ −5.7%, 0%, and

ffiffiffiffiffiffiffiffi
4=3

p
− 1 ≈ 15.5% using

the hard-sphere packing lattice constant, and −7.2%, 1.6%,
and 13.7% using the experimental lattice parameter. The
strain directions, given by matrices P and Q, are provided
in SM [35]. These strains are significantly lower than
the one resulting from the Bain, Pitsch, Nishiyama-
Wassermann (NW) and Kurdjumov-Sachs (KS) deforma-
tion paths which are −18.4%, 15.5%, and 15.5% (or
−19.7%, 13.7%, 13.7% using the experimental lattice
parameter). The direction of the largest strain, 15.5%, in
our solution is ½001�γk½1̄ 1̄ 0�α and therefore the two other
principal strains lay in the plane perpendicular to it. In the
Bain path, one of the two (degenerate) principal strains of
15.5% can always be chosen to be in the same
½001�γk½1̄ 1̄ 0�α direction. Therefore, the difference between
our proposed mechanism and the Bain distortion lies
entirely in the ð001Þγkð1̄ 1̄ 0Þα plane.
The reduction of strain in that plane is due to slipping

and naturally emerges from the d1 minimization. Figure 2
illustrates graphically how breaking down the plane in
strips can reduce the macroscopic change in shape and
therefore the strain. Imagine a sheet of metal that has been
stretched from its original square shape by an amount
corresponding to the Bain strains in the ð001Þγkð1̄ 1̄ 0Þα
plane; its dimensions are now 1.155 by 0.816. By cutting
the sheet in strips and by sliding them onto each other, one
can obtain a shape that is much closer to the unstretched 1
by 1 sheet, while, locally, the metal in each strip has been

stretched by an amount corresponding to the Bain strains (a
similar argument for twinning is made in Fig. 2 of
Ref. [42]). In our proposed mechanism, the strips are six
atomic layers wide and the actual transformation does not
occur in two steps; each strip is distorted through a local
shear that occurs simultaneously with the slipping
process.
In order for this mechanism to yield a perfect bcc lattice,

each strip needs to slip by an integer number of atomic
layers as shown in Fig. 1(c). Fulfilling this condition
determines the width of the strips which is of six atomic
layers using our choice of lattice parameters. In reality,
martensite deviates from perfect bcc depending on the
carbon content. We obtain qualitatively similar results if the
tetragonal BCT martensite structure is used. It is important
to note that this slipping process is fully described by the
displacements of the atoms within the transformation cells
(Figs. 1a and 1b). This explains why our algorithm finds a
unit cell of six atoms; each atom in the cell is displaced
along the ½110�γk½1̄11�α direction (blue cell vector) such
that the condition is fulfilled at the end of the
transformation.
The minimal distance result presented here bears a

striking resemblance to the PTMT since it involves a
slipping process and, as discussed further, an invariant
plane. In fact, in one of the original PTMT papers [16] and
in numerous subsequent studies [10] the f112gα plane is
explicitly used as the slipping and twinning plane because
striations parallel to that plane (sometimes referred to as
Neumann bands) are commonly observed in martensite
[3,11,19,43,44]. The slipping process happens precisely
along that f112gα plane in our optimal distance
mechanism.
Because we impose the final structure to be the perfect

bcc lattice, our algorithm cannot find the related
twinning process as it would lead to a different, twinned
bcc lattice. However, by simply inverting the direction of
the local displacements of the atoms for one column of
unit cells along the ½110�γk½1̄11�α direction as shown in
Fig. 2 of the Supplemental Material [35], we can obtain
the twinned bcc. This would yield a mechanism
very similar to the one presented in Ref. [28] but without
the need to assume a particular OR. In that study,
researchers also found the f11 ffiffiffi

6
p g habit plane (dis-

cussed later) and found that the twinned and untwinned
structures yield two variants of the KS orientation
relationship.
Using the hard-sphere packing lattice constant, one of

the principal strains is exactly zero, therefore, there
necessarily exists a plane that is undistorted by the trans-
formation. However, using the experimental lattice para-
meter, there does not exist a plane that is fully invariant.
Our approach is to look for a uniformly scaled plane instead
of a fully invariant plane. Indeed, there always exists a
plane such that the angles between its directions are

FIG. 2. Illustration of the effect of the slipping process. The
dashed squares show the undistorted plane and the black
rectangle on the left shows that same plane to which the Bain
strains of −18.4% and 15.5% are applied. The steps to obtain a
shape that is macroscopically similar to the undistorted plane but
microscopically similar to the Bain-strained plane are shown
from left to right.
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preserved, i.e., a plane that is similar, in the geometric
sense, to the initial plane. Any vector u of that plane obeys
kTuk ¼ kkuk, where k is a scalar, independent of the
choice of u. Ordering the eigenvalues of U such that
λ1 < λ2 < λ3, one can show that the vectors u will form a
plane if k ¼ λ2 (see SM [35]). The lattice mismatch
between the transformed plane and its equivalent in
austenite is 1 − λ2. In the limit where λ2 → 1, which is
the case when using the hard-sphere packing lattice con-
stant, the mismatch is zero and the plane is invariant. Using
λ1;2;3 provided above and P, we find that the vector
nHP ¼ Pð ffiffiffi

2
p

; 0;� ffiffiffi
6

p Þ ¼ ð1; 1̄;� ffiffiffi
6

p Þ is normal to the
invariant plane. This plane is approximately 0.5° from
the low index ð22̄� 5Þ plane. Using the experimental
parameters, we find the uniformly scaled plane to be about
0.4° from the low index ð22̄� 5Þ plane with a mismatch of
1.6%. This is an important result since the f225gγ habit
plane is one of the few experimentally observed habit
planes for low alloy platelike martensite [19,45]. Moreover,
interpreting the uniformly scaled plane as the habit
plane allows us to readily obtain the f112gα slipping
process as well as the f225gγ habit plane without having
to use a dilatation factor or additional shear processes
which have been highly criticized by the detractors of the
PTMT [45].
Let us now consider that the uniformly scaled plane is

also the habit plane between the two phases. In that case,
the rotation R is the one for which that plane does not
rotate during the transformation. Thus, it must fulfill
RUv=kRUvk ¼ v, where v are unit vectors of the uni-
formly scaled plane. From that relation, using U, P, and Q
we can calculate the rotation matrix R. The exact steps
necessary to obtain the matrices [one for ð11̄þ ffiffiffi

6
p Þ and

one for ð11̄ − ffiffiffi
6

p Þ] are detailed in SM [35]. The orientation
relationship is given by the transformation matrix that
changes the basis from fcc to bcc. Let us transform some
vector dðγÞ from the fcc basis to the bcc basis: RT trans-
forms the vector into the unrotated fcc basis, PT converts it
to the eigenvalue basis and finally Q converts it from
the eigenvalue basis to the bcc basis. Hence, dðαÞ ¼
QPTRTdðγÞ. By setting dðγÞ ¼ ½11̄1�γ and using the first

habit plane [ð11̄þ ffiffiffi
6

p Þ], we get dðαÞ ¼ ½0 − ffiffiffiffiffiffiffiffi
3=2

p ffiffiffiffiffiffiffiffi
3=2

p �α
which is parallel to ½01̄1�α and by setting dðγÞ ¼ ½110�γ we
get dðαÞ ¼ ½− ffiffiffiffiffiffiffiffi

2=3
p ffiffiffiffiffiffiffiffi

2=3
p ffiffiffiffiffiffiffiffi

2=3
p �α which is parallel to

½1̄11�α. In other words, we find the following OR:
½110�ð11̄1Þγk½1̄11�ð01̄1Þα which is a variant of the KS
OR: the most commonly observed OR in platelike
martensite [11]. Similarly, using the other habit plane
[ð11̄ − ffiffiffi

6
p Þ], we get ½110�ð1̄11Þγk½1̄11�ð1̄01̄Þα which is

another variant of the KS OR. With the experimental
lattice parameter, we find the same orientation relationship
with a misalignment between the f111gγ and f011gα
planes of less than 0.4°.

Interestingly, if we assume that the mechanism is
the same but that there is no extra rotation imposed
by the habit plane (R ¼ 0 and T ¼ U), the OR is
given by dðαÞ ¼ QPTdðγÞ, which leads to the ½001�ð110Þγ
k½1̄ 1̄ 0�ð1̄11Þα orientation relationship; a variant of the
Pitsch OR. This could explain why, in thin films, where
the problem is reduced to two dimensions and the con-
straints imposed by the interfaces between austenite and
martensite are less restrictive [5,6,23], it is the Pitsch OR
(and not the KS OR) that is observed experimentally [5–8].
In order to illustrate the consequences of our minimal

displacements assumption, we computed energy profiles
along the martensitic transformation from first principles
(Fig. 3). Without any phase coexistence [panel (a)], the
Bain mechanism exhibits no barrier which makes it
energetically advantageous over our proposed mechanism
(new). However, in reality, austenite and martensite
coexist both during and after the transformation. To
account for that, we evaluated the energy profile of a
thin (∼2 nm) infinite plate undergoing a martensitic
transformation within a fixed austenite matrix. We com-
pared (1) a Bain mechanism in the Bain OR, (2) the KS
shear mechanism (Bain path in the KS OR), and (3)
our proposed new mechanism in the KS OR (new).
Looking at Fig. 3(b), it is clear that, despite an energy
barrier caused by the slipping process, our optimal
distance mechanism is the most energetically favorable
in the final state due to its lower interfacial strain. The
energy difference between the final states increases with
plate thickness; hence, at a realistic thickness the final
state emerging from the optimal distance mechanism
would have significantly lower energy. The details of
the spin-polarized density functional calculations and the
corresponding crystal structures are given in the
Supplemental Materials [35].
In conclusion, we showed how minimizing the

distance [34] traveled by all atoms from the austenite
to the martensite phase in steels provides a description of
the martensitic transformation. It can explain the key

(a) (b)

FIG. 3. Energy profile of the martensitic transformation.
(a) Transformation of an infinite iron single crystal from fcc
(austenite) to bcc (martensite). (b) Transformation of a plate of
iron from fcc to bcc within the austenite matrix.
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experimentally observable features of the transformation
without relying on any experimental input (except lattice
constants) and without any adjustable parameters. Our
description is unifying in the sense that, using nothing but
the principle of minimal displacements of the atoms, it
naturally incorporates several elements of previous theories
including the assumption initially made in Ref. [12], the
slipping and twinningprocesses found inRefs. [13,16,21,22]
and subsequent work, the habit plane and mechanism found
in Ref. [28], and the fundamental role of the Pitsch
mechanism described in Refs. [5,26]. We thereby presented
a simple solution to the long-standing and important problem
of finding a general description of the martensitic trans-
formation. Our results suggest that distance minimization on
its own can be relevant to describe certain diffusionless,
solid-solid phase transformations. Hence, since our structure
matching procedure is not specific to the martensitic trans-
formation, it couldpotentially be used to studymore complex
systems such as shape memory alloys or solid-solid phase
change materials. Moreover, there is a promising outlook for
the use of ourmethodology in the field of interface physics as
many models based on geometric principles have already
been successful in describing interfaces [46–54].

This work is supported by the National Science
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Department of Energy’s Office of Energy Efficiency and
Renewable Energy, located at the National Renewable
Energy Laboratory.
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