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We experimentally and theoretically study phase coherence in two-component Bose-Einstein con-
densates of 87Rb atoms on an atom chip. Using Ramsey interferometry we determine the temporal decay of
coherence between the jF ¼ 1; mF ¼ −1i and jF ¼ 2; mF ¼ þ1i hyperfine ground states. We observe that
the coherence is limited by random collisional phase shifts due to the stochastic nature of atom loss. The
mechanism is confirmed quantitatively by a quantum trajectory method based on a master equation which
takes into account collisional interactions, atom number fluctuations, and losses in the system. This
decoherence process can be slowed down by reducing the density of the condensate. Our findings are
relevant for experiments on quantum metrology and many-particle entanglement with Bose-Einstein
condensates and the development of chip-based atomic clocks.
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Atomic Bose-Einstein condensates (BECs) in magnetic
traps are exceptionally well-isolated quantum many-body
systems. Distinct from most other systems, the coherence
of atomic BECs in state-of-the-art experiments is limited by
intrinsic dynamics rather than interactions with the
environment [1,2]. Elucidating the dominant decoherence
mechanisms is thus an intriguing challenge for quantum
many-body physics, but at the same time also highly
relevant for applications of BECs in quantum metrology
[3] and in experiments on the foundations of quantum
physics [4–7].
The spatial coherence across a condensate has been

studied in different systems [8–11]. Here we focus on the
temporal coherence of three-dimensional trapped BECs,
which limits the preparation fidelity of nonclassical
states and the duration of interferometric sequences in
precision measurements. Theoretical studies of BEC
temporal coherence have suggested different decoherence
mechanisms resulting from the interplay of elastic colli-
sional interactions, inelastic collisional atom loss, and
finite temperature [1,2]. Previous experiments have
mostly investigated inhomogeneous dephasing due to
mean-field driven spatial dynamics of the condensate
wave functions [12–14], while homogenous dephasing
was attributed to technical noise. Inhomogeneous dephas-
ing and spatial demixing can be reversed by spin echo
techniques [14]. Other experiments investigated the effect
of phase noise on spin-squeezed states [15]. However, a
detailed experimental study of the predicted homo-
geneous phase decoherence mechanisms [1,2], which
fundamentally limit the BEC coherence, has not yet been
reported.

We report experiments and corresponding theoretical
simulations of the decoherence mechanisms in two-
component BECs of 87Rb atoms. Using Ramsey interfer-
ometry, we explore the phase coherence of the hyperfine
ground states j1i≡ jF ¼ 1; mF ¼ −1i and j2i≡ jF ¼ 2;
mF ¼ þ1i in a magnetic trap on an atom chip [16–18].
This system is used in recent experiments on many-particle
entanglement and quantum metrology [3] as well as
compact atomic clocks [15,19]. Different aspects of coher-
ence in this system have been studied both in thermal and
degenerate ensembles [12–15,19–25]. In our setup, high
atom number stability and detection resolution allow us to
suppress the effect of preparation imperfections to the point
where intrinsic decoherence mechanisms dominate. We
observe a temporal increase of relative phase fluctuations
between the two hyperfine states (Fig. 1), which is
primarily caused by random collisional phase shifts due
to the stochastic nature of atom loss. This explanation is
confirmed quantitatively by a theoretical model based on
the quantum trajectory approach, which takes into account
elastic collisional interactions, collisional atom loss, initial
atom number fluctuations, and several other technical noise
sources. We conclude that the phase coherence of two
component BECs, which are inherently plagued by atom
loss due to their chemical metastability, is fundamentally
limited by this decoherence mechanism [2].
In our experiment, a BEC of 1020� 40 87Rb atoms is

prepared in the hyperfine state j1i and trapped in a
cigar-shaped magnetic potential with harmonic trapping
frequencies ωðr;zÞ ¼ 2π × ð714; 114Þ Hz. We coherently
couple the two hyperfine states j1i and j2i via a resonant
two-photon transition induced by microwave and radio
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frequency magnetic fields, with a two-photon Rabi
frequency of ≈2π × 600 Hz at a detuning of ≈2π ×
500 kHz from the intermediate state jF ¼ 2; mF ¼ 0i.
The two states j1i and j2i are of special interest because
their first order differential Zeeman shift vanishes at a
magnetic field of ≈3.23 G, making superpositions of the
two states largely insensitive to magnetic field fluctuations
[21]. In principle, spin-dependent interactions can lead to
demixing of the two components [26]. However, this effect
is weak in our system because of low atom density, as
confirmed by a two-component Gross-Pitaevskii equation
(2C-GPE) simulation and independent experiments

[17,18]. The atoms can thus be treated as condensed in
a single spatial mode and can be regarded as pseudospin
1=2. The whole ensemble can then be well described in
terms of a collective spin [3].
In order to investigate phase coherence between the two

spin states, we perform Ramsey interferometry. Starting
with a BEC in state j1i, we apply a π=2 pulse to prepare an
equal superposition coherent spin state. After an inter-
rogation time TR, a second π=2 pulse converts the accu-
mulated phase into an observable atom number difference.
We measure the atom numbers in the two spin statesN1 and
N2 by absorption imaging, and evaluate the normalized
atom number imbalance nrel ¼ ðN1 − N2Þ=ðN1 þ N2Þ. By
scanning the relative phase ϕR of the two pulses we record
the Ramsey interferometer fringe in phase domain
(Fig. 1, top panel). The outcome of such an experiment
can be described by the following heuristic model

nrelðϕRÞ ¼ V sinðϕR þ ϕÞ; ð1Þ

where V is the fringe visibility, and ϕ is a classical random
variable describing the phase accumulated by the state
during the interrogation time TR, which fluctuates due to
noise. The phase noise quantified by the standard deviation
Δϕ is evaluated in the following way.
For short Ramsey times TR < 0.2 s, we experimentally

set the Ramsey phase to the value ϕR ¼ ϕ0 where the mean
of nrel is zero. At this point, with the maximal slope
of the fringe ∂nrel=∂ϕ ¼ V, the phase is evaluated as ϕ ¼
arcsinðnrel=VÞ. In general, V < 1 due to the asymmetric
losses in the two spin states. We repeat the experiment to
gather statistics and evaluate the standard deviation Δϕ
assuming a Gaussian distribution of the phase fluctuations.
For long Ramsey times TR > 0.2 s, the above method is

not reliable due to ambiguities of the phase. As a more
reliable evaluation, we fit the entire Ramsey fringe with
nrelðϕRÞ ¼ C sinðϕR − ϕ0Þ, where C is the contrast, and ϕ0

is the fitted phase at zero crossing. For a Gaussian
distribution of the phase fluctuations, Δϕ is evaluated by
the relation C ¼ V expð− 1

2
Δϕ2Þ.

We observe an increase of the phase noise with time
(Fig. 1). The main interest of this work is to investigate the
origins of these fluctuations, which can be divided into
technical and intrinsic sources of noise. On the technical
side, the system is suffering from detection noise, local
oscillator noise, and magnetic field fluctuations. Low
detection noise in our experiment, mostly due to photon
shot noise in the absorption images, allows atom number
detection below the spin projection noise [17]. The stan-
dard deviation in N1 and N2 is σdet;1 ≈ 3.6 and σdet;2 ≈ 4.1
for the two states, respectively, resulting in an equivalent
phase noise of Δϕdet ≈ 5.3 × 10−3 rad for TR ¼ 0 and
Δϕdet ≈ 1.9 × 10−2 rad for TR ¼ 1 s, negligible compared
to other noises. Local oscillator noise and fluctuations of
the magnetic field will directly effect the phase between the
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FIG. 1. Ramsey interferometer fringes at TR ¼ 0.1 ms (a) and
TR ¼ 200 ms (b), with the red curve showing a sinusoidal fit of
the experimental data (blue dots). The fringe at 0.1 ms shows
almost no sign of phase noise while after 200 ms the fringe is
smeared out by phase noise and the contrast is reduced. Phase
noise as a function of TR is shown for a tight trap with ωðr;zÞ ¼
2π × ð714; 114Þ Hz (c) and a shallow trap with ωðr;zÞ ¼ 2π ×
ð301; 113Þ Hz (d). Experimental results are shown before
(red and purple) and after collisional phase shift correction
(blue and green). Dots and square symbols represent data at
TR < 0.2 s and TR > 0.2 s, respectively, evaluated with different
methods (see text). Results of quantum trajectory simulations are
given by the dashed line with corresponding color (statistical
uncertainty too small to be shown). Black dashed line shows the
upper bound on technical noise (see text). The insets show the
phase noise at TR < 0.2 s in a log-log scale. The minimal phase
uncertainty is close to the projection noise of a coherent spin state
Δϕ ¼ 1=

ffiffiffiffi
N

p
≈ 0.033 rad.
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two Ramsey pulses. To estimate the contribution of these
technical noises, we perform the same experiments with
noncondensed atoms in a relaxed trap with trap frequencies
ðωr;ωzÞ ¼ 2π × ð301; 113Þ Hz. The noncondensed atoms
suffer from the same technical noise, but due to a
significantly reduced atomic density, the effects of
interactions are largely suppressed. The results of this
experiment can be well fitted with a linear model
ΔϕtechðtÞ ¼ 0.1 ðrad=sÞ × t for TR < 12 s. The fit is used
as an upper bound on the technical noise in our experiment,
shown in Fig. 1 with a black dashed line. This demonstrates
that technical noise contributes little to the observed phase
noise in our experiments.
Intrinsic to the two-component BEC, the collisional

interactions also introduce phase fluctuations. The dynam-
ics of the collective spin due to elastic collisions between
atoms can be described by the Hamiltonian [27]:

Ĥ ¼ ℏχ̃ N̂ Ŝz þ ℏχŜ2z ; ð2Þ

where Ŝz ¼ ðN̂1 − N̂2Þ=2 is the z component of the
collective spin operator, and N̂ ¼ N̂1 þ N̂2 is the total
atom number. The parameters χ̃ ¼ 1

2ℏ ð∂
2E

∂N2
1

− ∂2E
∂N2

2

Þ and χ ¼
1
2ℏ ð∂

2E
∂N2

1

þ ∂2E
∂N2

2

− 2 ∂2E
∂N2∂N1

Þ depend on the energy E of the two

interacting components with mean atom number N̄1 and N̄2

in state j1i and j2i, respectively [27].
Both terms in the Hamiltonian will lead to a spread of the

phase. The nonlinear term ℏχŜ2z leads to one-axis twisting
[3], sometimes also referred to as phase diffusion.
However, in our case, low atom densities and nearly
identical scattering lengths render its contribution very
small with χ=2π ≈ 4.8 × 10−4 Hz. The first term, which
dominates in the Hamiltonian (χ̃=2π ≈ 8.6 × 10−3 Hz),
will introduce a phase evolution depending on the total
atom number N. This so-called collisional clock shift has
been studied both with BECs [12,21] and thermal clouds
[20,25,28]. As a result, for a fixed TR, the measured phase
ϕ shows a linear dependence on the total atom number N
[see Fig. 2(a)], which can be extracted by fitting the data
with the function

fðNÞ ¼ αðTRÞTRN þ β; ð3Þ

where αðTRÞ and β are free parameters. The value we
obtain for αðTRÞ can be used to quantify the strength of
the collisional phase shifts. In the ideal case with
χ ¼ 0 and without atom loss, αðTRÞTRN is proportional
to

R TR
0 χ̃ðtÞNðtÞdt.

As is common also in atomic clock experiments, one can
reduce the dephasing caused by atom number fluctuations
by postprocessing the data using the dependence of ϕ onN.
The corrected phase ϕcorr ¼ ϕ − αðTRÞTRN, as plotted in
Fig. 2(c), shows no dependence on N. This clock-shift
correction allows us to reduce the coherent effect and leads

to a significant reduction of the observed phase noise, as
shown in Figs. 1(c) and 1(d) and Figs. 2(c) and 2(d).
However, even after the correction, there is still significant
residual phase noise, which can be attributed to the random
nature of atom loss. Atom loss due to inelastic collisions
occurs stochastically, thus randomizing the atom number
time evolution. In general, this leads to phase fluctuations
since experimental shots with different atom number time
evolution will dephase with respect to each other.
Experimentally, only the final atom numbers N1 and N2

are accessible, therefore the correction method described
above does not allow us to subtract the random collisional
phase shifts completely.
To build a theoretical model taking into account this

interplay of collisional interactions and the stochastic
nature of atom loss, we model the quantum dynamics of
the collective spin with the master equation [29]:

dρ̂
dt

¼ −
i
ℏ
½Ĥ; ρ̂� þ

X4

k¼1

Ĉkρ̂Ĉ
†
k −

1

2
ρ̂Ĉ†

kĈk −
1

2
Ĉ†
kĈkρ̂; ð4Þ

where the Hamiltonian is defined in Eq. (2).
The dominant types of losses are one-body losses

described by loss constant K1, and the intrinsic losses
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FIG. 2. Inteferometer data (a),(c) and histogram (b),(d) at fixed
time TR ¼ 100 ms and fixed ϕR, with the raw data (red) and data
after the correction of collisional phase shift (blue). Black curves
are a linear fit of the data. The raw ϕ shows a dependence on N,
while after correction the slope is zero. Panel (d) shows a reduced
phase uncertainty compared to (b) due to the correction. Panel
(e) shows the collisional phase shift coefficient α at different
times in a tight trap ωðr;zÞ ¼ 2π × ð714; 114Þ Hz (red) and a
shallow trap ωðr;zÞ ¼ 2π × ð301; 113Þ Hz (purple). The dashed
curves with corresponding colors show the results of the quantum
trajectory simulation.
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from inelastic two-body collisions, described by inter-

species and intra-species two-body loss constants Kð2Þ
12

and Kð2Þ
22 , respectively. Two-body loss in state j1i

and three-body losses are negligible for our para-
meters. The quantum jump operators Ĉk express the
four types of significant losses in our system: one-
body losses ðĈ1; Ĉ2Þ ¼ ð ffiffiffiffiffiffi

K1

p
â1;

ffiffiffiffiffiffi
K1

p
â2Þ and two-body

losses ðĈ3; Ĉ4Þ ¼ ð ffiffiffiffiffiffi
γ12

p
â1â2;

ffiffiffiffiffiffi
γ22

p
â22Þ, where âi is the

bosonic operator annihilating atoms in the jii state.
Parameters γij are the integrated two-body loss rates,

i.e., γij ¼ Kð2Þ
ij

2

R
d3rjψ ij2jψ jj2, where jψ jj is the wave

function of state jji.
In order to quantify the atom loss in our experiment, we

perform three independent measurements. First, we prepare
a BEC in state j1i. With the loss of atoms happening solely
due to one-body losses, we can extract K1 by a simple
exponential fit, shown in Fig. 3, top panel. In a second
experiment, we measure the loss of atoms starting with a
BEC in j2i. In this case, there are one-body losses with
already determined rate K1 and the intraspecies two-body

losses depending on Kð2Þ
22 . We solve the one-component

GPE including losses with varying Kð2Þ
22 to find the best fit

to the experimental data, see Fig. 3, middle. Eventually, we
perform experiments with the BEC prepared in an equal

superposition of j1i and j2i (Fig. 3, bottom). In this case all
loss channels are present, but only one unknown loss

constant Kð2Þ
12 remains, which we determine by comparing

the 2C-GPE simulation with the data. The loss rate

constants determined in this way are Kð2Þ
22 ¼ 10.3ð3Þ ×

10−14 cm3 s−1 and Kð2Þ
12 ¼ 2.0ð1Þ × 10−14 cm3 s−1. Our

values differ from previously reported values in [30] but
agree with the ones from [31] and [32].
Besides the loss rates, the phase noise evaluated from

Eq. (4) is also very sensitive to the precise values of the
s-wave scattering lengths, especially the difference
between a11 and a22, which affects the parameter χ̃
crucially. To certify the values of scattering lengths used
as input of the theoretical model, we run the Ramsey
sequence with TR ¼ 10 ms with varying initial atom
numbers and extract χ̃. For this short interrogation time,
atom losses are insignificant and α ≈ χ̃. The 2C-GPE
simulation with values of scattering lengths taken from
[30] shows a good agreement with the experiment,
see Fig. 4.
For long interrogation times the atomic densities

decrease significantly due to atom loss. As a consequence,
the parameters χ, χ̃, and γij also change with time. To take
this effect into account, at each instant of time we compute
these parameters numerically by solving stationary coupled
Gross-Pitaevskii equations for the mean atom numbers
N̄1 and N̄2, determined from Fig. 3. Such an approach
assumes that the atomic densities follow adiabatically the
2C-GPE ground states and the superposition states with
different atom loss trajectories evolve with the same
parameters χðtÞ, χ̃ðtÞ, and γijðtÞ.
The phase noise simulation starts with an equal super-

position of the two spin states. The initial number of atoms
is drawn from a Gaussian distribution with mean and
standard deviation as in the experiment. Its dynamics,
given by Eq. (4), is found with the help of the quantum
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FIG. 3. Time evolution of the mean atom number for three
different initial states: all atoms in state j1i (top), all atoms in
state j2i (middle) and atoms initially in the superposition
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(bottom). Orange (black) points show the mea-
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FIG. 4. Comparison of the extracted initial χ̃ between experi-
ment (black dots) and 2C-GPE simulation (red line). For BECs
with varying initial atom numbers we extract χ̃ with a Ramsey
sequence of TR ¼ 10 ms.
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trajectory method [33,34]. This stochastic method
results in a set of random final states fjψ̃ðTRÞig, whose
mixture is the solution of the master equation, i.e.,P jψ̃ðTRÞihψ̃ðTRÞj ≈ ρ̂ðTRÞ. The numerically found
stochastic wave functions are treated as experimental
realizations—we analyze them in exactly the same manner
as the real measurements to extract contrast, visibility,
clock-shift correction, and phase noise. Although the
technical noise is very small, to ensure an appropriate
comparison with the experiment, we add it to the simulation
results.
In Fig. 1 we show the results of the quantum trajectory

simulations. The simulation accurately reproduces the
observed increase of phase noise, both before and after
the clock-shift correction. We also show in Fig. 2(e) the
simulated and measured collisional phase shift as a function
of time.
Our model does not include effects due to finite tempera-

ture, which can also lead to phase fluctuations [1,2]. We
neglect these effects because the absorption images do not
show a thermal fraction or excitations in the gas for the TR
investigated. Moreover, our zero-temperature model
already accounts for the vast majority of the observed
fluctuations, only for very long TR it slightly under-
estimates the phase noise. This shows that the phase
coherence is limited mainly by the interplay of collisional
interactions (elastic and inelastic) between atoms.
To extend the coherence time, one can decrease

the gas density, and thereby reduce the collisional
rates. We confirm this by performing the phase noise
measurement in a relaxed trap with trap frequencies
ωðr;zÞ ¼ 2π × ð301; 113Þ Hz. As shown in Fig. 1(d) the
phase noise is indeed strongly reduced. In order to reach
the fundamental bound of precision in quantum metrology
as theoretically described in [35,36], the effects of
decoherence should be further mitigated. Experimentally,
state-dependent potentials [27] could be applied to engineer
interactions, so that the collisional phase shift is minimized
or the quantum states are protected from the decoherence
induced by two-body losses, as proposed in [37].
In conclusion, we measure precisely the growth of the

phase noise in a trapped two-component BEC and identify
the main decoherence sources. We observe that the coher-
ence is limited by random collisional phase shifts due to the
stochastic nature of atom loss. The good agreement
between our data and the GPE simulation also allows us
to extract the two-body loss rate constants. Our experi-
mental findings provide a good understanding of the
temporal coherence of a two-component BEC. In contrast
to most other systems where decoherence is due to
interactions with the environment, in our experiment the
atoms are well-isolated, and the observed decoherence
effect is intrinsic to such a two-component BEC. Our
findings are relevant for experiments on many-particle
entanglement and quantum metrology [3] as well as

trapped-atom clocks and interferometers where the atomic
interactions play important roles [15].
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