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While deep learning has proven to be extremely successful at supervised classification tasks at the LHC
and beyond, for practical applications, raw classification accuracy is often not the only consideration. One
crucial issue is the stability of network predictions, either versus changes of individual features of the input
data or against systematic perturbations. We present a new method based on a novel application of
“distance correlation,” a measure quantifying nonlinear correlations, that achieves equal performance to
state-of-the-art adversarial decorrelation networks but is much simpler and more stable to train. To
demonstrate the effectiveness of our method, we carefully recast a recent ATLAS study of decorrelation
methods as applied to boosted, hadronic W tagging. We also show the feasibility of regularization with
distance correlation for more powerful convolutional neural networks, as well as for the problem of
hadronic top tagging.
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Introduction.—Recent breakthroughs in deep learning
have begun to revolutionize many areas of high energy
physics. One area that has received considerable focus is the
problem of classifying different types of jets at the LHC.
Deep neural networks have been applied, for example, to
distinguishing top quarks from light quark and gluon jets.
For this problem, a large number of architectures based on
fully connected neural networks [1,2], image-based meth-
ods [3,4], recursive clustering [5,6], physics variables
[7–10], sets [11], and graphs [12,13] have been studied
[14–16]. Related challenges of identifying vector bosons
[17,18], b-quarks [19,20], and Higgs bosons [13,21] and of
distinguishing light quark from gluon jets [22–25] have seen
similar progress. Beyond classifying single particles in an
event, there is alsowork on developing holistic methods that
classify full events according to the likely physics process
that produced them [26,27]. Finally, some of these novel
deep learning methods are beginning to be applied to
concrete experimental analyses (see, e.g., [28–30]).
So far, the recent activity in developing better jet

classifiers with deep learning has focused on maximizing
their raw performance. However, the most accurate clas-
sifier is often not the best one for actual experimental
applications. Instead, what is often desired is the most

accurate classifier given the constraint that it is decorre-
lated with one or more auxiliary variables.
The underlying reason for this requirement is that clas-

sifiers are trained onMonte Carlo (MC) simulated examples
(for which perfect truth labels are available) but are applied
to (unlabeled) collision data. While the simulated events are
of high fidelity, they do not perfectly reproduce the real data,
and this gives rise to systematic differences between training
and testing data. Understanding and mitigating these sys-
tematic differences is essential in any experimental analysis,
and having a decorrelated classifier has many applications
in this regard. For example, if the sources of systematic
uncertainty are known, one can attempt to explicitly decor-
relate a classifier against them in order to reduce or eliminate
their effects [31–34]. Or, one can attempt to control for these
systematic differences using data-driven methods such as
sidebanding in the invariant mass (Although different
auxiliary variables can be used in experimental analyses,
one of the most common choices is invariant mass. So for
concreteness, and without loss of generality, we will focus
on the case of invariantmass for the remainder of this paper).
If the signal is localized but the background is smooth in
mass, the sideband method allows one to calculate MC vs
data correction factors, define control samples, and estimate
backgrounds. But if the classifier sculpts features (e.g.,
bumps) into the background mass distribution, it cannot be
relied on for sidebanding. A classifier that is decorrelated
with mass is sufficient (although not necessary) to guarantee
smoothness of the background mass distribution.
The issue is especially acute for powerful multivariate

classifiers such as neural networks, which will have a strong
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incentive to “learn the mass” when building the optimal
discriminant. Even if one excludes mass from the list of
inputs to the machine learning algorithm, it may not be
enough to achieve a decorrelated classifier—many of the
other inputs may be correlated with mass, and machine
learning methods in general are flexible enough to exploit
correlations of inputs. Such improvements will be especially
relevant for (but not limited to) searches for new resonances
with unknown mass. The identification of resonances in
invariant mass distributions is historically the main avenue
to discovery in experimental particle physics and relies on
robust background estimates. Therefore, an important and
significant challenge is to design classifiers that are as fully
decorrelated from mass as possible while using maximal
information.
In this Letter, we will present a new method for training

decorrelated classifiers that achieves performance compa-
rable to state-of-the-art methods while being much easier to
train. The key observation is that a statistical measure called
“distance correlation” (DisCo) [35–38] is sensitive to general,
nonlinear correlations between two randomvariables and can
be efficiently computed from finite samples. DisCo is well-
known in statistics and has been applied to various fields,
including data science [39] and biology [40]. To our knowl-
edge, this is the first application of DisCo to particle physics.
By including DisCo as an additive regularizer term in the

loss function, we demonstrate that we can achieve a state-of-
the art decorrelated classifier with just one additional hyper-
parameter (the coefficient of the DisCo regularizer). By
varying this coefficient, we can control the tradeoff between
classification performance and decorrelation, interpolating
between a fully decorrelated tagger and a fully perform-
ant one.
To validate our methods and rigorously demonstrate that

they are state of the art, we will carefully reproduce the
results of a recent ATLAS study of decorrelated taggers for
identifying boosted W bosons [41]. This study includes a
comprehensive set of decorrelation methods, including
[31,42–44]. The most promising technique so far (in terms
of achieving the highest classifier performance for a given
level of decorrelation) has been adversarially training a pair
of neural networks: a classifier distinguishing different
classes and an adversary predicting the mass [31,44] for a
given classifier output.
The downside of the adversarial method has been that it

is extremely difficult to implement in practice. Not only
does one have to essentially train two separate neural
networks, each with its own set of hyperparameters, but one
has to carefully tune these two neural networks against each
other. This stems from the nature of adversarial training: the
objective is not to minimize a loss function but rather to
find a saddle point where the classifier loss is minimized
but the adversary loss is maximized. Without careful tuning
of learning rate schedules, number of epochs, minibatch
sizes, etc., the training easily becomes unstable (since the

loss is unbounded from below) and can quickly run away to
a meaningless result.
By contrast, DisCo regularization maintains the convex

objective of the original loss function (i.e., the DisCo term
is a positive measure of nonlinear correlations), making it
much more stable to train. And since it only has one
additional hyperparameter, no additional tuning is required.
We will show, in the context of the ATLAS W-tagging
study, that the result of DisCo decorrelation is comparable
to that of adversarial decorrelation. In the Supplemental
Material [45], we will also demonstrate the state-of-the-art
performance for top tagging with jet images and convolu-
tional neural networks (CNNs).
Distance correlation.—Given a sample of paired

vectors ðx⃗i; y⃗iÞ (where the index i runs over the sample)
drawn randomly from some distribution, we would like a
function that measures the extent to which they are drawn
from independent distributions, i.e., the extent to which
PjointðX⃗; Y⃗Þ ¼ PXðX⃗ÞPYðY⃗Þ. In order for this function to be
applicable in a deep learning context, we also require that
this function be differentiable and that it can be computed
directly from the sample.
In our case, the vectors are one dimensional and

correspond to mass X ¼ m and classifier output Y ¼ y
but clearly one can imagine many more applications of
such a measure at the LHC and beyond.
The usual Pearson correlation coefficientRonlymeasures

linear dependencies, so it is not suitable for our purposes.
Specifically, features can have nonlinear dependencies and
still exhibit zero Pearson R (While the Pearson correlation
coefficient is nonzero only if features are correlated, it can,
however, be used to actively correlate features (see, e.g.,
[53]). There are many information-theoretic measures of
similarity of distributions such as KL divergence, Jensen-
Shannon distance, and mutual information. These are
difficult to compute directly from the sample without
binning. One can approximate these measures by training
a classifier and using the likelihood ratio trick, but this again
leads to adversarial methods (see, e.g., [33,54–57]).
One measure that seems to fit the bill perfectly is

“distance correlation”, which originated in the works of
[35–38]. It can be computed from the sample, and it has the
key property of being zero iff X and Y are independent.
The definition of distance covariance is as follows:

dCov2ðX; YÞ ¼
Z

dpsdqtjfX;Yðs; tÞ − fXðsÞfYðtÞj2wðs; tÞ;

ð1Þ
where X ∈ Rp, Y ∈ Rq, fX and fY are the characteristic
functions for the random variables X and Y, and fX;Y is the
joint characteristic function for X and Y. Finally,

wðs; tÞ ∝ jsj−ðpþ1Þjtj−ðqþ1Þ ð2Þ
is a weight function that is uniquely determined up to an
overall normalization by the requirement that dCov is
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invariant under constant shifts and orthogonal transforma-
tions and equivariant under scale transformations [58].
Since fX;Y ¼ fXfY iff X and Y are independent random
variables, Eq. (1) makes it clear that distance covariance is a
measure of the independence of X and Y that is zero iff X
and Y are independent.
Using the definition of the characteristic function it is

straightforward to verify that we can also express dCov as

dCov2ðX; YÞ ¼ hjX − X0jjY − Y 0ji þ hjX − X0jihjY − Y 0ji
− 2hjX − X0jjY − Y 00ji ð3Þ

where j·j refers to the Euclidean vector norm (In fact, there
is a family of distance covariance measures parameterized
by 0 < α < 2 where one uses jX − X0jα instead of jX − X0j.
These relax the requirement of strict equivariance under
rescalings. In this Letter, we will focus on α ¼ 1, but in
principle this would be another hyperparameter to explore)
and ðX; YÞ, ðX0; Y 0Þ, ðX00; Y 00Þ are independently identically
distributed from the joint distribution of ðX; YÞ [X00 is not
used in Eq. (3)]. Using this alternative form of dCov2, it is
straightforward to compute a sampling estimate of dCov2

from a dataset of ðxi; yiÞ (In the following we will be
reweighting by pT. So we actually need a weighted form of
distance correlation. That follows easily from the sam-
ple Eq. (3)).
Finally, we normalize the distance covariance by the

individual distance variances to obtain distance correlation:

dCorr2ðX; YÞ ¼ dCov2ðX; YÞ
dCovðX;XÞdCovðY; YÞ ð4Þ

The distance correlation is bounded between 0 and 1.
Normalizing ensures equally strong decorrelation indepen-
dent of the overall scale.
We will add dCorr2 as a regularizer term to the usual

classifier loss function in the following (In principle,
another hyperparameter is the exact power of dCorr that
one adds to the loss function. We have not explored this in
much detail). In detail,

L ¼ Lclassifierðy⃗; y⃗trueÞ þ λdCorr2ytrue¼0ðm⃗; y⃗Þ; ð5Þ

where λ is a single hyperparameter that controls the tradeoff
between classifier performance and decorrelation, y⃗ is the
output of the neural network on a single minibatch, and y⃗true
and m⃗ are the true labels and masses, respectively (Our
implementation of DisCo is available at [59]). The subscript
ytrue ¼ 0 indicates that the distance correlation is only
calculated for the subset of theminibatch that is background;
this is the appropriate mode for W tagging. Of course, for
other applications it may be more appropriate to apply the
decorrelation to all events or even to signal events only.
Sample.—As discussed in the Introduction, we will focus

in this paper on W tagging, for which there is a detailed
study of existing decorrelation methods by the ATLAS

collaboration [41]. (See the Supplemental Material [45] for
a brief demonstration of DisCo decorrelation for top
tagging.) By recasting the ATLAS study as closely as
possible, we will be able to validate our methods and
rigorously demonstrate that our method of distance corre-
lation is state of the art.
Following the ATLAS study, we generate the standard

model processes pp → WW and pp → jj in PYTHIA8.219

[60] at
ffiffiffi
s

p ¼ 13 TeV with a generator level cut of pT >
250 GeV on the initial particles. We use DELPHES3.4.1 with
the default detector card for detector simulation [61]. We
also use the built-in functionality of DELPHES to simulate
pileup with hNPUi ¼ 24 as per the ATLAS study [41].
Jets are reconstructed using FASTJET3.0.1 [62] and the

anti-kT algorithm [63] with R ¼ 1 distance parameter. Jets
are required to have jηj < 2 and to be within ΔR < 0.75 or
the original parton. The daughters of the W are also
required to be within ΔR < 0.75 of the original W.
Finally, jets are trimmed [64] with parameters Rsub ¼ 0.2
and fcut ¼ 5%. For the final sample, jets are required to
have m ∈ ½50; 300� GeV and pT ∈ ½300; 400� GeV; the
mass distributions for signal and background are shown
in Fig. 1. Apart from the very last requirement on pT , these
are all following the ATLAS study. Here we choose to
focus on a more narrow range in pT for simplicity.
From this sample of jets, we compute the complete list of

high-level kinematic variables shown in Table 1 of the
ATLAS study (see [41] for more details and original
references). These form the inputs for all the methods in
the ATLAS study. We will also use them as inputs for the
dense neural network (DNN) plus distance correlation.
Since we will also study the decorrelation of CNN

classifiers (see below), we will also form jet images in
the same way as [65]. We form images with Δη ¼ Δϕ ¼ 2
and 40 × 40 pixel resolution. For simplicity, we stick to
gray-scale images (with pixel intensity equal to pT) for this
study. Figure 2 shows the average of 100 000W andQCD jet
images.
For all methods, we reweight the training samples so that

the pT distributions of signal and background are flat,

FIG. 1. Invariant mass distribution for the inclusiveWand QCD
samples.
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following the ATLAS study. We use 50 evenly spaced pT
bins between 300 and 400GeV. For evaluation, ATLAS also
reweights the signalpT distribution to look like background.
But since we are taking such a narrow pT slice, our pT
distributions are basically identical, so we skip this step.
All of the data samples used for this study will be made

publicly available here [66].
Methods.—Following [41], we measure the tagging

performance by the rejection factor R50 corresponding to
the inverse of the false positive rate (the probability of
misidentifying a QCD jet as a W jet) at a true positive rate
(the probability of correctly identifying aW jet) of 50%. The
decorrelation is quantified by the inverse of the Jensen-
Shannon divergence (JSD) 1=JSD50 between the inclusive
background distribution and the background distribution
passing the selection corresponding to a true positive rate of
50%. The JSD is calculated from histograms with 50 bins
between lowest and highest value. The binned entropy is
measured in bits.
We have implemented the following pairs of (W tagging,

decorrelation)methods in ourwork. From theATLAS study:
[τ21, designed decorrelated tagger (DDT)] [42,67], [D2, k-
Nearest Neighbors regression (kNN)] [68–70], [Adaboost
boosted decision tree (BDT), uBoost] [71], and (DNN,
adversary) [31]. We will additionally include the simplest
and possibly oldest decorrelation method, namely “plan-
ing”, or reweighting events so that the mass histograms of
signal and background are identical. As this approach is
relatively simple to implement and does not add much
computational cost, it is a good baseline procedure (See [72]
for a recent comparison study of planing against other
methods.). Finally, to all of this wewill add our newmethod
(DNN, DisCo regularization) for comparison. For details on
all these methods, see the Supplemental Material [45].
In addition, we will go beyond the ATLAS study and

examine a CNN classifier acting on jet images, together
with adversarial and DisCo decorrelation. This will
demonstrate that DisCo regularization is effective enough
to decorrelate more powerful deep learning classifiers that
use low-level, high-dimensional features. For the CNN
classifier, we use a scaled down version of the classifier

in [65]. There are four convolutional layers with 64, 32, 32,
32 filters (size 4 × 4) with 2 × 2 Max pooling after the
second and fourth layer. This is followed by three hidden
layers with 32, 64, and 64 nodes. All activations are
rectified linear units. Finally, we output to SOFTMAX.
For both CNN and DNN with DisCo regularization, we

used the Adam optimizer with minibatch size of 2048 and a
fixed learning rate of 10−4.We found that the relatively large
batch size of 2048 helped with the numerical stability of the
DisCo regularizer.We note that the sampling estimate (3) for
distance covariance is known to be statistically biased, and
an unbiased estimator was given in [73]. The bias goes to
zero as∼1=nwheren is the size of the sample (theminibatch
size in our case).We have verified that, as ourminibatch size
is sufficiently large, there is no practical benefit to using the
unbiased estimate of distance covariance in our case.
For the DNN (CNN), we performed a scan in DisCo

parameter λ in the range 0–600 (0–250). All classifiers were
trained for 200 epochs; no early stopping was used.We have
checked that 200 epochs is enough to ensure convergence in
the sense that training for more epochs does not improve
things. Then, for each λ and training instance, themodelwith
the best validation loss is selected. This procedure is
repeated six times with different random seeds to obtain a
sense of the variability in the training outcomes.
In all of the machine learning-based methods we use

250 000/80 000/80 000 signal jets and 110 000/330 000/
770 000 background jets for training/validation/testing. We
use so many background jets in order to minimize the
statistical error on the JSD calculation (which is calculated
only for the background).
The deep learning algorithms were implemented with

PyTorch and trained on an NVIDIA P100GPU.
Results.—Our final result is shown in Fig. 3, where the

performance of various decorrelation methods on the test

FIG. 2. Average of 100 000 jet images for W jets (left) and
QCD jets (right).

FIG. 3. Decorrelation against background rejection for different
approaches.
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set is summarized in the plane of 1=JSD50 (which measures
decorrelation) vs R50 (which measures classifier perfor-
mance). For DNNþ DisCo and CNNþ DisCo, the enve-
lopes of the six independent trainings per λ are shown,
together with lines connecting the median-decorrelated
points for different values of rejection. For the other
machine learning methods, a representative result is shown
per decorrelation parameter. (We have checked that the
envelopes for DNNþ adversary and CNNþ adversary are
comparable to their DisCo counterparts).
The qualitative (and even quantitative) agreement with

Fig. 11(a) of [41] is excellent, and we see a clear tradeoff
between classifier performance and the amount of
decorrelation.
Comparing DNNþ DisCo to the other methods, we find

that it has comparable performance to DNNþ adversary.
Meanwhile, DNNþ DisCo is much easier to train—
whereas DisCo adds exactly one hyperparameter and no
additional neural network parameters to the DNN, the
adversarymore than doubles the number of hyperparameters
and adds an entire secondneural network to the story. See the
Supplemental Material [45] for a complete list of hyper-
parameters for the adversarial training. These were found
through manual tuning and their sheer complexity nicely
illustrates the need for a simpler method of decorrelation.
We see that DisCo regularization is equally capable of

decorrelating the more powerful CNN classifier and again
achieves comparable performance to CNNþ adversary.
One concern could have been that a more powerful deep
learning method such as the CNN could overpower the
DisCo regularizer, but our result demonstrates that this is
not the case. At the highest levels of decorrelation, we note
that both DNN and CNN performances are comparable.
In Fig. 4, we indicate more directly the level of decorre-

lation in the background mass distribution for the pure CNN
case (no decorrelation) and for the CNNþ DisComethod at
a working point that achieves 1=JSD50 ∼ 103. We see that
DisCo is quite effective at stabilizing the background mass
distribution against a cut on the classifier.

Finally, let us also comment briefly on the performance
of planing. Unlike DisCo regularization and some of the
other methods studied here, planing yields a single working
point instead of a tunable tradeoff between decorrelation and
classifier performance. Since its performance depends on
the joint probability distribution for mass and the other
observables (Planing replaces pðx;mÞ with pðx;mÞ=pðmÞ,
which does not guarantee independence), planing is not
guaranteed to achieve strong results. But it is interesting to
see that in this case (and inmany of the cases studied in [72]),
planing the DNN and CNN classifiers achieves very good
performance. The performance lies on the DisCo regulari-
zation curve, and DisCo is capable of further decorrelation.
Conclusion.—Deep learning is greatly increasing the

classification performance for a wide number of reconstruc-
tion problems in particle physics. With the increasing
adoption of these powerful machine learning solutions, a
thorough understanding of their stability is needed.
In this Letter, it was shown how a simple regularization

term based on the distance correlation metric can achieve
state-of-the-art decorrelation power. Training is easier to set
up, has far fewer hyperparameters to optimize, and is more
stable than adversarial networks, while simultaneously
being more powerful than simpler approaches.
DisCo regularization is an effective and promising new

method for decorrelation that should have a host of
immediate experimental applications at the LHC. At the
same time, the potential use cases are much wider and
include problems of fairness and bias of decision algo-
rithms in social applications. This will be an extremely
interesting direction for future exploration.
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