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We derive the AdS5 × S5 Green-Schwarz superstring from four-dimensional Beltrami-Chern-Simons
theory reduced on a manifold with singular boundary conditions. In this construction, the Lax connection
and spectral parameter of the integrable superstring have a simple geometric origin in four dimensions
as gauge connection and reduction coordinate. κ symmetry arises as a certain class of singular gauge
transformations, while the world-sheet metric comes from complex-structure-changing Beltrami
differentials. Our approach offers the possibility of investigating integrable holography using traditional
field theory methods.
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Introduction.—Integrability is an invaluable exact tool
for AdS=CFT holography [1] which has provided signifi-
cant evidence in favor of many of the dualities conjectured
by Maldacena [2,3]. Signs of integrability were noticed
early on in both gauge and string theory. At weak
’t Hooft coupling the dilatation operator corresponds to
an integrable spin-chain Hamiltonian [4–6], while at strong
coupling superstring equations of motion are equivalent to
the flatness of an auxiliary Lax connection [7,8]. Yet the
origin of the integrable structure underlying these theories
remains obscure.
In this Letter, we will attempt to demystify the appear-

ance of integrability in holographic superstring theory by
showing how Metsaev-Tseytlin (MT) κ-symmetric string
actions [9,10] can be obtained from four-dimensional
Chern-Simons (CS4) gauge theory with suitably chosen
boundary conditions. Recently, a new approach to integra-
bility based on CS4 theory has been proposed in [11–13]. In
this approach, reducing CS4 theory to two dimensions in
the presence of defects [14] gives rise to many integrable
two-dimensional field theories such as the Gross-Neveu
and Wess-Zumino-Witten models, as well as the pure-
spinor sigma model on AdS5 × S5 [15].
We begin by obtaining the MT sigma model from a

reduction of CS4 theory generalizing [14]. As in that work,
the mysterious Lax connection and spectral parameter of
the MT sigma model have a prosaic interpretation in terms
of the gauge potential and direction of reduction in the CS4
theory [16]. The absence of fermion kinetic terms makes

the MT sigma model pathological [17]. Nonetheless,
coupling it to a world-sheet metric leads to a consistent
string theory [18] with target-space supersymmetry [19]
because the action has κ symmetry [20].
We couple CS4 theory to complex-structure-changing

Beltrami differentials. In the presence of singular boundary
conditions, these couplings cannot be removed by field
redefinitions and reducing this Beltrami-Chern-Simons
(BCS) theory to two dimensions gives the MT string theory.
We show that BCS theory has κ symmetry, with κ
transformations implemented by certain singular gauge
transformations combined with an action on the Beltrami
differentials which has compact support near the singular-
ities. The resulting theory is essentially a conventional gauge
theory of Chern-Simons type coupled to extra matter.
On general grounds its observables will be Wilson lines
whose interactions encode the R matrix of AdS=CFT. These
can be computed using Feynman graphs with propagators
and vertices derived in a conventional way from the action,
taking into account the slightly unusual boundary condi-
tions. As a result, our construction opens up the possibility of
investigating integrability in string theory and holography
through conventional and rigorous quantum field theory
methods, albeit with singular boundary conditions.
MT sigma model from CS4.—Consider the CS4 action on

V ¼ Σ × C

SCS4 ¼
1

h

Z
V
ω ∧ LCSðAÞ; ð1Þ

where LCS is the CS Lagrangian (23), Σ ¼ R2, C ¼ CP1

and the holomorphic one-form ω has n second-order poles,
and 2n − 2 first-order zeros

ω ¼
Qðz − qkÞ

Qðz − q̃kÞQðz − piÞ2
dz: ð2Þ
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The gauge group of main interest in this Letter is
G ¼ psuð2; 2j4Þ whose dual Coxeter number is zero. As
a result, the theory is framing-anomaly free and h is
not quantized. As reviewed in [18], psuð2; 2j4Þ has a
Z4 automorphism and we denote its im eigenspace
by psuð2; 2j4ÞðmÞ (m ¼ 0;…; 3) and recall that
psuð2; 2j4Þð0Þ ¼ soð4; 1Þ × soð5Þ. As in [14], for a well-
defined action we require Aw; Aw̄ to have first-order zeros at
z ¼ pi and poles at

Awjz¼qk ∼
1

z − qk
; Aw̄jz¼q̃k ∼

1

z − q̃k
: ð3Þ

Solving the equations of motion and boundary conditions
gives A ¼ Âþ A0, where Â ¼ σ̂−1dσ̂, A0 ¼ σ̂−1Lσ̂, with
Lz̄ ¼ 0 and

Lw ¼
Qðz − piÞQðz − qkÞ

X
j

1

pj − z

Qðpj − qkÞQ
i≠jðpj − piÞ

∂wσjσ
−1
j ; ð4Þ

Lw̄ ¼
Qðz − piÞQðz − q̃kÞ

X
j

1

pj − z

Qðpj − q̃kÞQ
i≠jðpj − piÞ

∂w̄σjσ
−1
j : ð5Þ

The notation used above follows [14]. In particular, up to
gauge transformations, Az̄ defines a map σ∶R2 → Gn,
which extends to σ̂∶V → Gn, where near z ¼ pi, σ̂ ∼ σi,
with σi∶R2 → G. In [14] constant gauge transformations
were used to set σn ¼ Id. Inserting A back into SCS4
localizes the action on the boundary and gives a large
family of integrable sigma models, with left-acting Gn

symmetry and Lax connection L [14], which were also
found in [21] without reference to CS4 theory.
We now set pj ¼ expð2πij=nÞ and, in contradistinction

to [14], take the limit

q1 ¼ … ¼ qn−m ¼ q̃n−mþ1 ¼ … ¼ q̃n−1 → 0;

q̃1 ¼ … ¼ q̃n−m ¼ qn−mþ1 ¼ … ¼ qn−1 → ∞; ð6Þ

with 1 < m < n. Upon rescaling h → hð−q̃1Þn−1, the
m ¼ 2 action is

Sn;m¼2 ¼ k
4πn

Z
Σ

X
i

Ji;wJi;w̄ −
X
i;j

αijJi;w̄Jj;w

−
k

8πn2

Z
Σ

X
i≠j

p3
i þ p3

j

pipjðpi − pjÞ
Ji;w̄Jj;w

þ k
12πn2

Z
Σ×Rþ

fabcXi;aXi;bXi;c; ð7Þ

where Ji ≡ dσiσ−1i , Xi ≡ σ−1i dσi fabc are the gauge-group
structure constants, Rþ is the z-plane radial direction,
αij ≡ ð1þ pi=pj þ pj=piÞ=n and k ¼ 8πi=h [22].
These models have a Zn symmetry ρ, which permutes

the n copies of G, together with acting by the Zn

automorphism on each copy, and multiplies z by an nth
root of unity. This fixes a subgroup ρðGð0ÞÞ ¼ Gð0Þ ⊂ G,
which for G ¼ psuð2; 2j4Þ is Gð0Þ ¼ soð4; 1Þ × soð5Þ.
Gauging the Zn action leads to novel integrable models
on generalized symmetric spaces G=Gð0Þ whose equations
of motion are equivalent to the flatness condition of the
Lax connection

Ln;m
w ðzÞ ¼

Xm
k¼0

zkJðkÞw þ
Xn−1

k¼mþ1

zk−nJðkÞw ;

Ln;m
w̄ ðzÞ ¼

Xn−m−1

k¼0

zkJðkÞw̄ þ
Xn−1

k¼n−m
zk−nJðkÞw̄ ; ð8Þ

where Ja ≡ J1;a, Ji;a ¼ ρi−1ðJaÞ, and JðkÞ is the kth
Zn eigenspace. In particular, for m ¼ 2, n ¼ 4 we
obtain the MT σ model [9,10,23] with target-space
psuð2; 2j4Þ=½soð4; 1Þ × soð5Þ�

Sn¼4;m¼2 ¼ k
4π

Z
Σ
Jð2Þw Jð2Þw̄ − Jð1Þw Jð3Þw̄ þ Jð3Þw Jð1Þw̄ : ð9Þ

Metric and Virasoro constraints.—The Sn;m models,
unlike their pure-spinor counterparts [14], do not have
second-order kinetic terms for fermions, since the boundary
conditions imposed in CS4 to obtain them are not elliptic.
This apparent disadvantage is in fact a boon: for judicious
choices of G, S4;2 has κ symmetry when coupled to the
world-sheet metric.
In our derivation of S4;2 from CS4 theory it is not

immediately clear how a world-sheet metric might arise.
After all, CS4 theory does not depend on the four-
dimensional metric. More precisely, this is only true for
manifolds without boundary or for everywhere regular field
configurations. On the other hand, allowing singularities in
the gauge field like those in Eq. (3) means that the CS4
theory may no longer be invariant under general-coordinate
transformations on the boundary or in regions near such
singularities. If we separate the singular part of the gauge
connection

Aw ≡ AðpÞ
w þ AðregÞ

w ; Aw̄ ≡ AðpÞ
w̄ þ AðregÞ

w̄ ; ð10Þ

SCS4 is not general-coordinate invariant

δvSCS4 ∼ −
I

z¼0;∞

ω∧ðAðpÞ
w dvw þ AðpÞ

w̄ dvw̄Þ∧A: ð11Þ

We used Green’s theorem to rewrite δvSCS4 as a contour
integral around z ¼ 0;∞, where Aw and Aw̄ have poles. For
S4;2 this integral reduces to

−
Z
Σ
ðAð2Þ

w Að2Þ
w dw∧dvw þ Að2Þ

w̄ Að2Þ
w̄ dw̄∧dvw̄Þ: ð12Þ
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Since this is nonzero, it appears that with our boundary
conditions the CS4 theory is no longer invariant under
general-coordinate transformations.
The lack of diffeomorphism invariance (12) suggests we

need to introduce a new field to restore it. We do this by
varying the complex structure with the new field corre-
sponding to the Beltrami differential β. Under such a
variation, the de Rham differential d, which is the CS4
theory’s BRST operator, changes to

d → dþ dw̄Lβw̄∂w þ dz̄Lβz̄∂w ; ð13Þ

where L is the Lie derivative. Since the Cartan homotopy
formula gives the Lie derivative as

LV ¼ ½d; ιV �; ð14Þ

where ιV is the inner multiplication (contraction) by V, we
are adding a BRST-exact term to the action, which should
have no effect in the bulk. The βw̄-dependent part of the
action is

Sβw̄ ≡
2

h

Z
V
ωzβw̄Awð∂ z̄Aw − ∂wAz̄Þ; ð15Þ

with a similar term for Sβz̄. The combined Beltrami-
Chern-Simons action

SBCS ≡ SCS4 þ Sβw̄ þ Sβz̄ ð16Þ

is invariant, up to a w derivative, under a new gauge
invariance

A → Aþ LVA; β → β þ LVβ; ð17Þ

with gauge parameter V ≡ v∂w for an arbitrary function v.
This invariance can be used to gauge away one of the
components of β, for example βz̄ → 0. Working in this
gauge, redefining Aw̄

Aw̄ → Aw̄ − βw̄Aw; ð18Þ

one recovers the original CS4 action

SCS4 þ Sβw̄ → SCS4 : ð19Þ

This is to be expected, since on a manifold with no
boundary the CS4 theory is metric independent and we
are adding a BRST-exact Beltrami term to it. This should
leave the theory unmodified, up to field redefinitions.
However, in the presence of a boundary the field redefi-
nition (18) might not be compatible with the boundary
conditions. Indeed, Aw̄ and Aw have poles of different order
at z ¼ 0;∞, while Az̄ is regular. Since β should be regular
on the boundary, this means that we cannot eliminate
the Beltrami couplings on the boundary using field

redefinitions (18). With boundary conditions (6) and (3),
the β-dependent part of the action reduces to a boundary
contribution at z ¼ 0

Sβ ¼
δz¼0

h

Z
Σ
2βw̄A

ð2Þ
w Að2Þ

w : ð20Þ

This coupling restores diffeomorphism invariance at z ¼ 0
and varying the action with respect to βw̄ leads to the
Virasoro constraint

Að2Þ
w Að2Þ

w ¼ 0: ð21Þ

We can introduce a similar modification to Eq. (13) along
∂w̄ and show that it is trivial up to a field redefinition away
from z ¼ ∞, leading to a boundary action

Sβ̃w ¼ δz¼∞

h

Z
Σ
2β̃wA

ð2Þ
w̄ Að2Þ

w̄ ; ð22Þ

which restores diffeomorphism invariance at z ¼ ∞.
In the Polyakov action, the world-sheet metric g is taken

up to Weyl transformations. If we analytically continue this
action to allow g to be a metric with complex coefficients,
then the data of g, up to Weyl transformations, is equivalent
to the data of a holomorphic Beltrami differential β and an
antiholomorphic Beltrami differential β̄ [24]. The reality
condition corresponding to asking that g be a metric with
real coefficients is that we ask β and β̄ to be complex
conjugate. For a discussion of such a factorization of the
Polyakov action see [25].
Similarly, in the Polyakov action, the gauge symmetries

(after gauging away Weyl transformations) are world-sheet
diffeomorphisms. Infinitesimally these are sections of
the tangent bundle TΣ. If we analytically continue the
Polyakov action, allowing the infinitesimal world-sheet
diffeomorphisms to be complex, we find the gauge trans-
formations we used for the Beltrami differential fields.
Indeed, TΣ ⊗R C decomposes as T1;0Σ, which gives the
gauge transformations for β, and T0;1Σ, giving the gauge
transformations for β̄.
Gauge invariance in BCS theory.—Before proceeding to

discuss κ symmetry in BCS theory, we briefly review how
to modify gauge variations in the presence of a Beltrami
deformation βw in order for SBCS to be gauge invariant. In
components the CS Lagrangian is

1

2
LCS ¼ Aw̄ð∂ z̄Aw − ∂wAz̄Þ þ Az̄∂wAw̄ − Aw̄½Aw; Az̄�; ð23Þ

where as in the rest of the paper the trace is implicit. The
βw ≡ β part of the Beltrami-deformed action is

Sβ ¼ −
1

h

Z
V
ωzð∂ z̄βw̄A2

w þ 2βw̄Aw∂wAz̄Þ: ð24Þ
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SCS4 is invariant under gauge transformations

δχAμ ¼ ∂μχ þ ½Aμ; χ�; ð25Þ

but Sβ is not

δχSβ ¼ 2

Z
V
ωβw̄ð∂ z̄Aw − ∂wAz̄ − ½Aw; Az̄�Þ∂wχ: ð26Þ

To cancel this we modify the gauge variation of Aw̄ in
accordance with Eq. (13) to

δχ;βAw̄ ¼ ∂w̄χ þ ½Aw̄; χ� − βw̄∂wχ; ð27Þ

while leaving the gauge variation of the other components
of A unchanged. Since Sβ does not depend on Aw̄ its
variation (26) is unchanged, while the gauge variation of
SCS4 becomes

δχ;βSCS4 ¼ −δχSβ; ð28Þ

making SBCS gauge invariant.
κ symmetry.—We now show that the action SBCS is

invariant under certain singular G-gauge transformations,
which reduce to κ symmetry in the σ model. To this end,
consider gauge variations

δξA ¼ dξþ ½A; ξ� ð29Þ

which have a simple pole near z ¼ 0

ξ ∼
1

z
ξð3Þ þ � � � : ð30Þ

Since the generator of the Z4 automorphism multiplies z by
−i, we immediately see that the singular gauge variation
ξð3Þ must be in the i3 eigenspace of Z4 and hence is
fermionic, as expected of a κ variation. The variation of
SCS4 is

δξSCS4 ¼
1

h

Z
V
ωðAw̄dz̄½Aw; ξ� − Awdz̄½Aw̄; ξ�Þ: ð31Þ

Near z ¼ 0 the gauge fields have an expansion

Aw̄ ∼
Að3Þ
w̄

z
þ � � � ; Aw ∼

Að2Þ
w

z2
þ Að3Þ

w

z
þ � � � : ð32Þ

Inserting these into (31) we get [26]

δξSCS4 ¼
δz¼0

h

Z
Σ
½Að3Þ

w̄ ; Að2Þ
w �ξð3Þ: ð33Þ

Analogously, for gauge variations with a simple pole at
z ¼ ∞, we have ξ ∼ zξð1Þ þ � � �, and the CS4 action
changes by

δξ̃SCS4 ¼
δz¼∞

h

Z
Σ
½Að1Þ

w ; Að2Þ
w̄ �ξ̃ð1Þ: ð34Þ

κ transformations can be obtained from the singular gauge
transformations by requiring [18]

ξ̃ð1Þ ≡ Að2Þ
w̄ κð1Þw þ κð1Þw Að2Þ

w̄ ;

ξð3Þ ≡ Að2Þ
w κð3Þw̄ þ κð3Þw̄ Að2Þ

w ; ð35Þ

where the κ are the independent (local) parameters of κ
transformations. Notice that the above expression involves
selecting a particular (matrix) representation for the gauge
group, and using matrix multiplication in that representa-
tion. In judiciously chosen cases, there are certain famous
Fierz identities [18,27,28] [see Eq. (1.80) of [18] ] that can
be used to reexpress the κ variation of SCS4 as

δκSCS4 ¼ −
δz¼0

2h

Z
Σ
trðAð2Þ

w Að2Þ
w Þtrðϒ½κð3Þw̄ ; Að3Þ

w̄ �Þ

−
δz¼∞

2h

Z
Σ
trðAð2Þ

w̄ Að2Þ
w̄ Þtrðϒ½κð1Þw ; Að1Þ

w �Þ: ð36Þ

Above, ϒ is a suitable constant matrix which for
psuð2; 2j4Þ is diagð14;−14Þ. The lack of gauge invariance
under (30) can be compensated by varying the Beltrami
operators under κ transformations. Working in the gauge
βz̄ ¼ 0, we demand

δκβw̄ ¼ δjzj≤ε
2

trðϒ½κð3Þw̄ ; Að3Þ
w̄ �Þ; ð37Þ

where δjzj≤ε has support in an ε neighborhood of z ¼ 0
only. Now, Sβw̄ is no longer gauge invariant near z ¼ 0.
Expanding as in Eq. (32), we find

δκSβ ¼
1

2h

Z
V4

∂ z̄δjzj≤ε
z

trðϒ½κð3Þw̄ ; Að3Þ
w̄ �ÞtrðAð2Þ

w Að2Þ
w Þ

¼ 1

2h

I

z¼0

dz
z

Z
Σ
trðϒ½κð3Þw̄ ; Að3Þ

w̄ �ÞtrðAð2Þ
w Að2Þ

w Þ ð38Þ

using the identity ∂ z̄δjzj≤ε ¼ δjzj¼ε. This cancels the gauge
noninvariance of SCS4 at z ¼ 0 in Eq. (36). The z ¼ ∞ term
can be analogously canceled by a β̃w variation. The separate
cancelations at z ¼ 0;∞, which on the world sheet
correspond to self-dual- and anti-self-dual-vector represen-
tations or after Wick rotation holomorphic and antiholo-
morphic ones, provide a novel separation of the two sectors
in four dimensions.
Conclusions.—In this Letter, we have introduced BCS

theory and showed that, upon imposing suitable singular
boundary conditions, it reduces to the MT superstring. The
Beltrami fields and boundary gauge connection of BCS
theory map to the world-sheet metric and sigma-model
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fields, respectively. The Lax connection and spectral
parameter appear somewhat mysteriously in string theory,
but from the four-dimensional BCS point of view they are
simply the gauge connection and holomorphic coordinate
of the reduction. In BCS theory κ symmetry corresponds
to a certain class of singular gauge transformations and
κ invariance holds for gauge groups for which a
suitable hypercharge matrix ϒ exists. This includes G ¼
psuð2; 2j4Þ and its plane-wave [29] and flat-space [10]
limits. We will investigate the properties of these back-
grounds from the four-dimensional point of view more
fully in a forthcoming paper [30].
There are other well-known integrable superstring

backgrounds with a Lax connection [31–37]. In these
cases, the MT coset action often needs to be supplemented
by extra fermionic degrees of freedom [38] to obtain an
action equivalent to the conventional κ-symmetric super-
string actions [39,40] and it would be interesting to see how
to extend these to BCS theory. Some of these backgrounds
have target-space moduli and understanding how these
appear in BCS theory could provide new insights into
moduli spaces.
It would be interesting to perform a Batalin-Vilkovisky

quantization of BCS theory. This introduces a tower of
extra fields including conventional b − c ghosts of string
theory. If the R2 with coordinates w, w̄ is replaced by a
Riemann surface Σ, then the formalism we have described
includes the integral over the moduli of the world-sheet Σ.
Indeed, the Beltrami differential β on Σ has zero modes
which live in the Dolbeault cohomology group H1ðΣ; TΣÞ,
which is of (complex) dimension 3g − 3 for g > 1 [41].
The antiholomorphic Beltrami differential has zero modes
which live in the complex conjugate of this space. Together,
the manifold of zero modes is the product of the
moduli space with its complex conjugate: Mg × M̄g. As
we are doing an analytically continued path integral,
we need to choose an integration contour. It is natural to
choose the contour to be the locus where the holo-
morphic and antiholomorphic Beltrami differential are
complex conjugate, leading to an integral over one copy
of the moduli space Mg. We will return to a detailed
discussion of this and its relation to the Polyakov
path integral over Riemann surfaces [42] in a future
paper [30].
We hope our construction can shed light on the relation-

ship between the pure-spinor and Green-Schwarz formu-
lations of string theory. Quantizing BCS theory should also
offer new insights into quantum integrability of holo-
graphic string backgrounds and connect with the quantum
spectral curve approach [43,44]. In particular, we expect
that compactifying the string world sheet Σ ¼ R × S1 will
lead to diagrams involving the photon propagator “wrap-
ping” the S1 direction and the Q functions should appear as
solutions of the Baxter equation involving the transfer
matrix of BCS theory.
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