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How a closed interacting quantum many-body system relaxes and dephases as a function of time is a
fundamental question in thermodynamic and statistical physics. In this Letter, we analyze and observe the
persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field
Ising Hamiltonian realized with a trapped-ion quantum simulator. We measure the temporal fluctuations in
the average magnetization of a finite-size system of spin-1=2 particles. We experiment in a regime where
the properties of the system are closely related to the integrable Hamiltonian with global spin-spin
coupling, which enables analytical predictions for the long-time nonintegrable dynamics. The analytical
expression for the temporal fluctuations predicts the exponential suppression of temporal fluctuations with
increasing system size. Our measurement data is consistent with our theory predicting the regime of many-
body dephasing.
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Introduction.—Investigating the relaxation and dephasing
dynamics of a closed many-body quantum system is of
paramount importance to the study of thermodynamics
and statistical physics. Most commonly, this problem is
investigated by studying the time evolution of the expect-
ation value of a local observable, e.g., particle density or
magnetization, after quenching the system from an initial
out-of-equilibrium state [1–4]. For a generic non(near-)
integrable system, the expectation value tends to relax to
a constant in the thermodynamic limit which can be
described by a (pre)thermal state at some temperature
depending on the initial state [5–22]. However, if the system
size is finite, there exist persistent temporal fluctuations
around the constant average value, as sketched in Fig. 1(a).
Importantly, these persistent temporal fluctuations in the
expectation value after a quench are distinct from the
usual fluctuations of observables in equilibrium (where
expectation values are constant). Studying these temporal
fluctuations represents the next level of the description of
quench dynamics going beyond merely looking at long-time
observable averages.

A crucial question for statistical physics is how the
temporal fluctuations are suppressed with increasing
system size N. In the case of integrable systems mappable

(a)

(b)

FIG. 1. (a) Schematic behaviour of an observable hAðtÞi after a
quench, in a finite-size system. (b) Temporal fluctuation σA for
N ¼ 7 spins (left) and size scaling exponent κ (right) as a function
of power-law coupling exponent α for three fixed parameters
λ ¼ 2J0=B. The vertical dashed lines indicate the crossover
values of α� ¼ lnð2jλjÞ= ln 2 [23].
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to free quasiparticles, it has been found that the variance of
temporal fluctuations scales as 1=N [32–34]. In the case of
generic nonintergrable systems [35–39], or the integrable
systems solvable with the Bethe ansatz (not mappable to
noninteracting systems) [40], the temporal fluctuations are
exponentially suppressed by the system size due to the
highly nondegenerate spectrum. This was first found only
numerically. However, in Ref. [39], the authors were able,
for the first time, to provide an exact analytical result for the
exponential scaling of fluctuations withN spins in a weakly
nonintegrable system. In this setting, they identified a
general dynamical regime which they termed “many-
body dephasing” [41]. In the thermalization process,
the dephasing mechanism comes from the relaxation of
the quasiparticle distribution to thermal equilibrium by
quasiparticle scattering described by the Boltzmann
equation. In contrast, many-body dephasing results from
lifting of all the exponentially large degeneracies of
transition energies in integrable systems while the quasi-
particle distribution can remain practically unchanged [39].
Nevertheless, the exponential size scaling due to many-

body dephasing in nonintegrable systems has not yet been
verified in experiments. Here, we give the first experi-
mental observation of persistent temporal fluctuations after
a quantum quench characterized as a function of system
size, employing a trapped-ion quantum simulator.
We present a direct measurement of relaxation dynamics
in the nonintegrable system by measuring the temporal
fluctuations in the average magnetization of a finite-size
system of spin-1=2 particles. After including the exper-
imental noise in the data analysis, the temporal fluctuations
from experimental data are consistent with our numerical
simulations and theoretical analysis based on the concept of
many-body dephasing.
Model Hamiltonian.—The Hamiltonian implemented in

this experiment is the long-range transverse-field Ising
model,

H ¼
X
i<j

Jijσxi σ
x
j −

1

2
B
X
i

σzi ; ð1Þ

where Jij ≈ J0=ji − jjα > 0, is a long-range coupling that
falls off approximately as a tunable power law. The
Hamiltonian (1) is implemented using an applied laser
field which creates spin-spin interactions through spin-
dependent optical dipole forces [42]. The spin chain is
initialized to the j↓↓ � � �↓iz state, then a quench is
performed using Hamiltonian (1), and the magnetization
along the z axis is measured as a function of time. The cases
of α−1 ¼ 0 and α ¼ 0 correspond to two integrable limits,
i.e., the nearest neighbor coupling and global coupling
models, respectively. For a finite α > 0, Hamiltonian (1) is
in general nonintegrable.
Temporal fluctuations.—In the present experiment, the

observable is the magnetization, i.e., A ¼ N−1P
j σ

z
j. The

temporal average of the variable hAðtÞi is calculated as
hAðtÞi≡ T−1

R tiþT
ti hAðtÞidt, where the temporal averaging

is restricted within the time window between ti and ti þ T.
The variance of temporal fluctuations of hAðtÞi is defined
via σ2A ≡ ½hAðtÞi − hAðtÞi�2, with σA the standard deviation.
We use jΦni (n ¼ 1; 2 � � � 2N) to represent the many-
body eigenstates of Hamiltonian (1) with eigenenergy
En. Given the initial state jψð0Þi, the exact time
evolution of the observable is hAðtÞi ¼ P

m;nhψð0ÞjΦmi
hΦmjAjΦnihΦnjψð0ÞieiΔmnt, where Δmn ≡ Em − En is the
transition energy between the two energy levels jΦmi and
jΦni (ℏ ¼ 1). In the long timewindow limit (T → þ∞), we
have the average,

hAðtÞi ¼
X

m;n;Δmn¼0

hψð0ÞjΦmihΦmjAjΦnihΦnjψð0Þi;

and the variance of temporal fluctuation,

σ2A ¼
X
Δ≠0

j
X

Δmn¼Δ
hψð0ÞjΦmihΦmjAjΦnihΦnjψð0Þij2; ð2Þ

with Δ denoting the set of all the possible values of Δmn.
For the integrable models (α ¼ 0 or α−1 ¼ 0), there are
exponentially many degeneracies with the number of spins
for a given transition energy Δmn, since each many-body
eigenstate can be labeled by many independent conserved
quantities. However, for a generic nonintegrable model
(α > 0), there are no conserved quantities except the
Hamiltonian itself. Thus, it is reasonable to assume that
all the degeneracies of transition energies are lifted, making
Δmn ¼ 0 only possible for m ¼ n in the nonintegrable
model, so Eq. (2) simplifies to

σ2A ¼
X
m≠n

jhψð0ÞjΦmihΦmjAjΦnihΦnjψð0Þij2: ð3Þ

Upon closer analysis, this is the basic reasoning that leads
to the exponential suppression of fluctuations with system
size [35]. However, in general cases, it is impossible to
evaluate this expression analytically.
Theoretical results.—We investigate numerically the

temporal fluctuation σA as a function of α for fixed
dimensionless parameter λ≡ 2J0=B. We also extract from
our numerical simulations the size scaling exponent κ from
the fit σA ∝ e−κN for N ¼ 3–10 spins [see Fig. 1(b)]. We
find two distinct regimes, at small and large α, separated by
the crossover value of α� ¼ lnð2jλjÞ= ln 2 [23]. The cross-
over between those regimes can be understood from the
competition between the two terms in Hamiltonian (1), i.e.,
the magnetic field energy −B

P
i s

z
i (where szi ≡ 1

2
σzi ) and

the next-nearest-neighbor (NNN) spin-spin coupling
2−αþ2J0

P
i s

x
i s

x
iþ2, which, for α > 0, is the leading term

responsible for breaking integrability [23]. In the regime of
α ≫ α�, by neglecting the NNN (and other long-range)
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coupling terms, the Hamiltonian is reduced into an inte-
grable model. Adding the NNN coupling terms weakly
breaks the integrability and results in many-body
dephasing [39]. We cannot reach this regime in the
experiment since the power-law exponent is α ≈ 0.7.
Therefore this work lies in the opposite regime of
α ≪ α�, where the long-range coupling terms are dominant
over the magnetic field energy, and an analytical prediction
can be obtained, as we will show below.
In the global coupling limit (α ¼ 0), the Hamiltonian

Hα¼0 ¼ −BSzN þ 2J0ðSxNÞ2 þ NJ0=2 ð4Þ
is called Lipkin-Meshkov-Glick model [59], which is
integrable [60,61] since there exist N conserved quantities.
For example, S⃗2n ≡ Sx2n þ Sy2n þ Sz2n (n ¼ 2;…; N) and the
Hamiltonian (4) itself satisfy ½S⃗2n; Hα¼0� ¼ 0, where Sβn ≡P

n
i¼1

1
2
σβi with β ¼ x, y, z. In the special case of λ → ∞

(B → 0), we can label each energy level by
jS1; S2 � � � SN−1; SN; SxNi and group all the eigenstates into
N þ 1 subspaces according to SxN . In each SxN subspace,
there are ð N

N=2þSxN
Þ degenerate levels. We define the notation

jΦλ¼∞
ðN=2Þ;SxN i as the eigenstate with SN ¼ N=2 and spin

projection SxN at λ ¼ ∞.
For finite α > 0, since the interaction term in Hamiltonian

(1) keeps the total spin projection SxN unchanged, the
eigenstates in different SxN subspaces are decoupled. All
the degenerate eigenstates in the same SxN subspace couple
each other resonantly and form new hybridized eigenstates
jΦni appearing in Eq. (2). To estimate σA in Eq. (3), we
assume each many-body eigenstate jΦni to be a super-
position of all the ð N

N=2þSxN
Þ levels in the SxN subspace with

probabilities fluctuating about their uniformly distributed
value ð N

N=2þSxN
Þ−1. In the experiment, the prequenched spin

state is jψð0Þi ¼ j↓;↓ � � �↓iz which only couples the states
with total spin SN ¼ N=2. Since jΦλ¼∞

ðN=2Þ;SxN i is the only

component with total spin SN ¼ N=2 of the many-body
jΦni in the SxN subspace, we have

jhψð0ÞjΦnij2 ≈
�

N
N=2þ SxN

�
−1
Pλ¼∞
ðN=2Þ;SxN ; ð5Þ

with Pλ¼∞
ðN=2Þ;SxN ≡ jhψð0ÞjΦλ¼∞

ðN=2Þ;SxN ij
2. Based on this

assumption and the eigenstate thermalization hypothesis
(ETH) [8,9,56–58], we are able to obtain an approximate
formula for Eq. (3) [42]

σ2A ≈ 2
X
SxN;S

0x
N

Pλ¼∞
N
2
;SxN

Pλ¼∞
N
2
;S0xN

ð N
N=2þSxN

Þ þ ð N
N=2þS0xN

Þ jA
λ¼∞
SxNS

0x
N
j2; ð6Þ

with the matrix element Aλ¼∞
SxNS

0x
N
≡ hΦλ¼∞

ðN=2Þ;SxN jAjΦ
λ¼∞
ðN=2Þ;S0xN i.

For large N, we have the asymptotic expression that

�
N

N=2þSxN

�
∼ 2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=NπÞp
e−2ðSxNÞ2=N . The denominator of

Eq. (6) indicates that σA ∝ 2−N=2, predicting the size scaling
exponent κ ¼ ln

ffiffiffi
2

p
≈ 0.35.

Considering both λ and α finite, the formula (6) holds as
long as α ≪ α� but the eigenstate jΦλ

ðN=2Þ;SxN i refers to the

eigenlevel adiabatically connected to jΦλ¼∞
ðN=2Þ;SxN i. In gen-

eral, there is no simple closed form for the eigenstate
jΦλ

ðN=2Þ;SxN i with a finite λ. However, Eq. (6) reduces the

calculation of σA to an N × N eigenvalue problem which
can easily be solved on a computer [62]. As we will show
further below, the analytical predictions compare well with
the experiment (see Figs. 4(a) and 4(b) and Ref. [42]).
Experimental results.—To perform this experiment, we

use a trapped-ion quantum simulator [43] where each
effective spin-1=2 particle is encoded in the hyper-
fine ground state of one 171Ybþ ion with j↑i≡
2S1=2jF ¼ 1; mF ¼ 0i and j↓i≡ 2S1=2jF ¼ 0; mF ¼ 0i.
The Hamiltonian of Eq. (1) is realized by global spin-
dependent optical dipole forces from laser beams, which
modulate the Coulomb interaction to create an effective
Ising coupling between spins [63]. The field term is
implemented by asymmetrically detuning the two laser
beat notes generating the optical dipole forces [42].
The magnetization fluctuations σA are characterized by

measuring the standard deviation of the average magneti-
zation of the sum of all ions in the chain, i.e.,
hAi ¼ N−1P

jhσzji. This is measured with B fields ranging
from �2π × 0.5 kHz to 2π × 2.0 kHz. The two plots in
Fig. 2 show the magnetization data measured as a function
of time with a four-ion chain and B ¼ �2π × 0.5 kHz.
Although the decoherence time in our trapped-ion
simulator is long enough to consider J0 and B unchanged
within a single time evolution up to t ¼ 2 ms, the values of
J0 and B may vary between different time evolutions. We
assume the coupling strength and magnetic field in the
experiments to be independent and normally distributed.
Then, the averaged observable A at a fixed time t also needs
to be averaged over the experimental values of J0 and B,
resulting in

hAðtÞi ¼ hhψðtÞjAjψðtÞiiJ0;B: ð7Þ

In Fig. 2, the red curves are the theory fits by setting σJ0 and
σB both to approximately 2π × 0.1 kHz. To fit the experi-
mental data, we use the gradient descent method to search
for the optimal values of σJ0 and σB, which happen to be
roughly equal. Therefore, we set σJ0 and σB to be the same
values for simplicity.
In general, with a positive B field, we observe more

significant oscillations than when using a negative B field.
This can be understood by analyzing the overlap between
the prequench state and the postquench energy eigenstates
(obtained for the postquench J0 and B values). For the
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system parameters given in Fig. 2, the structure of the
postquench spectrum is such that at high energies there is a
nonvanishing energy gap in the thermodynamic limit.
Conversely, in the low energy sector of the spectrum the
level spacing decreases with system size and the gap
vanishes in the thermodynamic limit. For the positive B
field, the prequench state is the superposition of several of
the highest excited states of the spectrum and the energy
gap leads to more persistent oscillations. For the negative B

field, the prequench state is very close to the ground state of
the spectrum [64], suppressing the oscillations [42].
We plot the standard deviation of the average magneti-

zation σA as a function of λ ¼ 2J0=B for fixed N in Fig. 3.
The data for N ¼ 3 to N ¼ 6 agree with the theoretical
prediction. The N ¼ 7 data largely agrees with theory
excluding the two outlying points at negative λ values. For
N ¼ 8, the data points tend to gather around the 0.07 level
indicating that the measurement noise in this case obscures
the measured fluctuations. In these plots, the values near
λ ¼ 0 were not taken because when B ≫ J0 the ions are
predominantly acting paramagnetically. In this regime,
fluctuations are expected to be very small and well below
the noise floor of this experiment. The shape of the data is
asymmetric with a pronounced slope at 2J0=B ¼ 1=2. This
point marks the ferromagnetic (FM) to paramagnetic (PM)
phase transition of the ion chain. The fluctuations are
enhanced here as this is an unstable point for the system. In
contrast, the antiferromagnetic (AFM) to PM transition [31]
for λ < 0 is not as pronounced.
System size scaling.—The temporal fluctuation variance

σ2A given by Eq. (3) is obtained by averaging over an infinite
time window J0t ∈ ½0;þ∞�. However, in the experiment,
we can only average over a finite time window up to
t ∼ 2.0 ms (i.e., 3 or 4 oscillations depending on the value
of λ), as the long-time fluctuations are suppressed by the
noise in the parameters J0 and B. In Figs. 4(a)–4(c), we
compare the analytical results given by Eq. (6) to the
numerical results with different averaging time windows.
The short-time-window averaging only makes sense for
small system size as larger system sizes result in smaller

FIG. 3. Temporal fluctuation σA as a function of λ ¼ 2J0=B for N ¼ 3–8 ions from experimental data (blue dots with white error bars)
and from numerical simulations (blue curves) with parameters: ðσJ0 ; σBÞ ¼ 2π × ð0.12; 0.12Þ kHz for N ¼ 3, 2π × ð0.11; 0.11Þ kHz for
N ¼ 5 and 2π × ð0.10; 0.10Þ kHz for N ¼ 4; 6 − 8. The blue shade associated with each numerical curve takes account of the
experimental uncertainty of λ. Experimental parameters: see Table I in the Supplemental Material [42].

FIG. 2. Time evolution of average magnetization,
hAi ¼ N−1 P

jhσzji, over N ¼ 4 ions out to 2 ms for B ¼ þ2π ×
0.5 kHz (a) and B ¼ −2π × 0.5 kHz (b). Each data point is the
average of 4000 experiments, reported with the respective
statistical error (white bars). For both plots: blue are data points,
black and red are theoretical results with ðσJ0 ; σBÞ ¼ 0 and
ðσJ0 ; σBÞ ¼ 2π × ð0.1; 0.1Þ kHz, respectively. Parameters:
J0 ¼ 2π × 0.50 kHz, α ¼ 0.71.
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level splittings and makes the period of temporal fluctua-
tions longer. The fits to the infinite-time-window averaging
show that the system size scaling exponent is κ ≈ 0.31
(κ ≈ 0.35) for λ ¼ 1.3 (λ ¼ 1.7), which is close to the
theoretical prediction κ ¼ ln

ffiffiffi
2

p
for N ≫ 1 [42].

In Figs. 4(d)–4(f), we compare the experimental data
with the numerical results taken from Fig. 3 for different λ
values. The fits to the experimental data and numerical
results for N ¼ 3–5 (λ ¼ 1.7) or N ¼ 3–6 (λ ¼ 1.3) show
good agreement. For λ ¼ 0.5, our analytical expression
breaks down as the system is in the crossover regime, but
the experimental data still confirm the numerical simula-
tions as shown in Fig. 4(f). For λ ¼ 1.7, the fit to the
experimental data gives the system size scaling exponent
κ ¼ 0.25�0.08

�0.01, where the superscript is the uncertainty from
the least square fitting and the subscript is the uncertainty
from the statistical errors in the experiments [42]. We
finally note that an exponential fit of data generated from
single-particle dephasing (σA ∝ 1=

ffiffiffiffi
N

p
) [39] for N ¼ 3–5

would lead to an exponent κ ∼ 0.13, which is expected to be
even further suppressed by the noise in J0 an B. A detailed
statistical analysis is presented in the Supplemental
Material [42].
Summary.—Using a trapped-ion quantum simulator, we

have presented the first experimental observation of per-
sistent temporal fluctuations after a quantum quench with a
long-range interacting transverse-field Ising model. We
characterized how the fluctuations in the average magneti-
zation of the spin chain depend on the transverse field and
the spin-spin interactions. Numerical simulations compared
with experiment show that, as a function of system size N,

the exponential suppression of temporal fluctuations
matches well with the theoretical prediction.
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