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We show that the entropy production rate bounds the rate at which physical processes can be performed
in stochastic systems far from equilibrium. In particular, we prove the fundamental tradeoff h _SeiT ≥ kB
between the entropy flow h _Sei into the reservoirs and the mean time T to complete any process whose time-
reversed is exponentially rarer. This dissipation-time uncertainty relation is a novel form of speed limit: the
smaller the dissipation, the larger the time to perform a process.
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Despite operating in noisy environments, complex
systems are capable of actuating processes at finite pre-
cision and speed. Living systems in particular perform
processes that are precise and fast enough to sustain, grow,
and replicate themselves. To this end, nonequilibrium
conditions are required. Indeed, no process that is based
on a continuous supply of (matter, energy, etc.) currents can
take place without dissipation.
Recently, an intrinsic limitation on precision set by

dissipation has been established by thermodynamic uncer-
tainty relations [1–6]. Roughly speaking, these inequalities
state that the squared mean-to-variance ratio of currents is
upper bounded by (a function of) the entropy production.
Despite producing loose bounds for some specific models
[7,8], their fundamental importance is undeniable as they
demonstrate that thermodynamics broadly constrains non-
equilibrium dynamics [9].
For speed instead, an equivalent limitation set by

dissipation can only be speculated. For example, we know
from macroscopic thermodynamics that thermodynamic
machines will produce entropy to deliver finite power.
Yet, a constraint on par with thermodynamic uncertainty
relations, only based on dissipation, is still lacking.
Efforts in this direction have appeared lately [10,11],

inspired by research on quantum speed limits which are
bounds on the time needed to transform a system from
one state into another [12]. When extended to classical
stochastic dynamics, these relations acquire a somewhat
formal appearance [13–16]. In their most explicit form they
bound the distance between an initial state and a final one at
time t—technically, the 1-norm between the two prob-
ability distributions—in terms of the chosen time t, the
dissipation, and other kinetic features of the system [13].
However, many systems of interest, especially biological
ones, operate under stationary (or time-periodic) conditions
[17]. They do not involve any (net) transformation in the
system’s state. The changes are confined to the reservoirs
that fuel the nonequilibrium dynamics via mass or energy

exchanges, for instance. Furthermore, the kinetic features
of these systems are hardly known [18,19].
We show in this Letter that the dissipation alone suffices

to bound the pace at which any stationary (or time-periodic)
process can be performed. To do so, we set up the most
appropriate framework to describe nontransient operations.
Namely, we unambiguously define the process duration by
the first-passage time for an observable O to reach a given
threshold D [20–23]. We first derive a bound for the
instantaneous rate of the process rðtÞ, uniquely specified by
the survival probability, psðtÞ ¼ e−

R
t

0
dt0rðt0Þ, that the

process is not yet completed at time t [24]. Then, for
stationary (respectively, time-periodic) dynamics we obtain
an uncertainty relation between the average duration of the
process T and the mean (time-averaged) dissipation rate in

the reservoirs h _Sei (respectively, h _Sei). This novel speed
limit applies to any process that is exponentially more
likely than its reverse, defined by the time-reversed
observable Õ.
We start by considering stochastic trajectories ωt

of duration t—a list of states xt0 with t0 ∈ ½0; t�—in
a space Ωt with a stationary probability measure
PðωtÞ ¼ Pðωtjx0Þρðx0Þ, with ρðx0Þ the stationary proba-
bility density of state x0. We can think of ωt as a diffusion
or a jump process describing a nonequilibrium system
subjected to the action of nonconservative forces which
may be mechanical or generated by reservoirs with differ-
ent temperature or chemical potentials, for instance. Also
non-Markovian dynamics [25–27] or unravelled quantum
trajectories of open systems [28] may fit into the following
framework. We introduce the stopping time τ ≔ infft ≥
0∶OðωtÞ ∈ Dg as the minimum time for an observable
O∶Ωt → R to reach values belonging to a specific domain
D ⊂ R, loosely referred to as “threshold”. The observable
O, the threshold D, and the time τ, define the physical
process and its duration. For concreteness, τ may be the
minimum time to displace a mass, or to exchange a given
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amount of energy or particles with a reservoir. In general, it
represents the time needed for a specific physical process to
be carried out by the system.
We next identify the space of “survived” trajectories at

time t, Ωs
t , such that if ωt ∈ Ωs

t then OðωtÞ ∉ D. They
correspond to trajectories in which the process is not
completed. The associated probability that the process is
not yet completed at time t is expressed by the survival
probability psðtÞ ≔ Probðτ > tÞ, which satisfies psð0Þ ¼ 1
by definition. We can formally write it as

psðtÞ ¼
X
ωt∈Ωs

t

PðωtÞ ¼
X
ωt∈Ωt

χðOðωtÞÞPðωtÞ ð1Þ

where χðOðωtÞÞ equals 1 if Oðωt0 Þ ∉ D for all t0 ≤ t and
zero otherwise.
We then consider the (involutive) transformation ωt ↦

ω̃t that time reverses the order of the states xt0 (possibly
changing sign, according to their parity). This allows us to
define the log ratio

kB log
PðωtÞ
Pðω̃tÞ

≕
Z

t

0

dt0 _ΣðωtÞ: ð2Þ

Here Pðω̃tÞ ¼ Pðω̃tjx̃0Þρðx̃0Þ is the probability measure of
time-reversed trajectories evolving with the original
dynamics and starting from the stationary probability
distribution ρðx̃0Þ. If the dynamics obeys local detailed
balance [29,30], _Σ ¼ _Se þ dS=dt0 is the entropy production
rate at time t0, which splits into the entropy flux in the
reservoirs, _Se, plus the time derivative of the system
entropy S ¼ −kB log ρðxt0 Þ.
Applying the time reversal to Eq. (1) and using Eq. (2)

we find

psðtÞ ¼
X
ωt∈Ωt

χðOðω̃tÞÞe−
R

t

0
dt0 _ΣðωtÞ=kBPðωtÞ ð3Þ

after the relabeling ω̃t → ωt. Notice that the sum in Eq. (3)
is restricted by χðOðω̃tÞÞ to a subset of trajectories
Ω̃s

t which differs from Ωs
t if ÕðωtÞ ≔ Oðω̃tÞ ≠ OðωtÞ.

This defines a different process, named the reverse
process, whose associated survival probability is p̃sðtÞ ≔P

ωt∈Ωt
χðÕðωtÞÞPðωtÞ. Hence, we arrive at the modified

integral fluctuation relation

psðtÞ ¼ p̃sðtÞhe−
R

t

0
dt0 _Σ=kBis̃: ð4Þ

Hereafter, hFis̃ ≔
P

ωt∈Ω̃s
t
FðωtÞPðωtÞ=p̃sðtÞ denotes the

normalized average of the generic observable F on the set
of survived trajectories Ω̃s

t . One should note that Eq. (4)
appears in implicit form in Refs. [31–33] as a generalized
fluctuation theorem holding when a subset of forward
trajectories have no time-reversal equivalent [34]. Our
crucial new ingredient is to define Ωs and Ω̃s via the

choice of an observable and a threshold, and to assign
stopping times to trajectories in that subset.
As a consequence of Jensen’s inequality, Eq. (4) yields

psðtÞ ≥ p̃sðtÞe−
R

t

0
dt0h _Σis̃=kB ; ð5Þ

which gives a bound on the pace at which the two processes
proceed. Note that the theory does not impose any con-
straint on processes defined by time symmetric observ-
ables, i.e., Õ ¼ O. For them, ps and p̃s coincide and they
drop out of Eq. (5). Still Eqs. (4) and (5) give nontrivial
results, i.e., the integral fluctuation theorem and the
positivity of entropy production for survived trajectories,
respectively.
Since survival probabilities are positive and monotoni-

cally decreasing, one can define the instantaneous rate rðtÞ
of the process as [35]

rðtÞ ≔ −
1

psðtÞ
dps

dt
ðtÞ; ð6Þ

and analogously for r̃ðtÞ, which satisfy the bound

1

kB

Z
t

0

dt0h _Σis̃ ≥
Z

t

0

dt0ðr − r̃Þ: ð7Þ

Further assuming rðtÞ ≫ r̃ðtÞ, for t ≪ mint1=r̃ðtÞ we
can set p̃sðtÞ equal to 1 and approximate the entropy
production rate with the (constant) mean entropy flux of the
stationary dynamics, h _Σis̃ ≃ h _Σi ¼ h _Sei. Therefore, Eq. (7)
gives our first key result: the entropy flux is an upper bound
on the time-averaged rate r̄ðtÞ ≔ ð1=tÞ R t

0 dt
0r of the

process,

h _Sei=kB ≥ r̄ðtÞ: ð8Þ

Furthermore, when the mean time of the process exists,
i.e., when hτi ¼ R

∞
0 dtpsðtÞ≕ T is finite [24], Eq. (8) can

be turned into a bound on T . Assuming that the reverse
process is negligible for all times in which psðtÞ decays,
integration of Eq. (5) yields our main result: the dissipation-
time uncertainty principle,

h _SeiT ≥ kB: ð9Þ

The fundamental implication of this result is that to realize
a nonequilibrium process in a given (average) time T at
least kB=T must be dissipated in the reservoirs. The only
requirement is that the reverse process is much rarer. This
can happen even close to equilibrium for large thresholds,
i.e., when the domain D can be reached only by atypical
fluctuations; or in the presence of weak noise, which is
typically the case for problems described by transition
state theory, or by macroscopic fluctuation theory where
fluctuations are exponentially suppressed in the system
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size. We will illustrate these two cases on paradigmatic
models.
The first example represents overdamped particle trans-

port in one spatial dimension. The dynamics follows the
Langevin equation

_x ¼ −U0ðxÞ þ
ffiffiffiffiffiffiffiffi
2=β

p
ξ ð10Þ

with periodic boundary conditions in x ∈ ½0; 2π�. Here,
ðkBβÞ−1 denotes temperature, ξ is a zero-mean Gaussian
white noise of unit variance, and UðxÞ ¼ a cosðxÞ − fx is a
periodic potential superimposed to a constant nonconserva-
tive tilt f > 0. This model describes a wealth of transport
processes ranging from loaded molecular motors [36] to
electrons across Josephson junctions [37]. Equations (8)
and (9) apply in the stationary regime for the process of
transporting the coordinate x over N > 0 periods, i.e.,

O ¼
Z

t

0

_xt0dt0; D ¼ ½2πN;∞Þ: ð11Þ

The reverse process, actuated by the trajectories realizing a
negative current Õ ¼ −2πN, is much rarer for large N or β
on the time scales relevant to the processes Eq. (11).
For large N, the rates rðtÞ and r̃ðtÞ are both negligibly

small at short time, when the processes can only be realized
by large fluctuations of ξ, whereas rðtÞ ≫ r̃ðtÞ at times t≳
2πN=f thanks to the ballistic transport induced by the tilt f.
Thus, Eqs. (8) and (9) apply with the stationary entropy
flow given by h _Sei ¼ kBfβh_xi, where the mean velocity h_xi
and the mean time T are analytically known [38]
(see Fig. 1).

For β large with respect to the smaller energy barrier
ΔUmin, escaping from the tilted potential well is a weak
noise problem [39]. Namely, the process Eq. (11) unfolds
with a constant rate, roughly estimated as the product
of N Arrhenius factors, i.e., r ∼ e−NβΔUmin (see Fig. 2).
Similarly, the reverse process takes place with rate r̃ ∼
e−NβΔUmax ≪ r (where Umax is the larger energy barrier),
which is negligible for sufficiently large f. Even though the
weak-noise estimation of r breaks down for f → 1 (the
value for which ΔUmin → 0), the bounds Eqs. (8) and (9)
hold true and they become tighter as the distance from
equilibrium increases (see inset in Fig. 2). Note that in both
cases, i.e., large (but finite) N and β, r̃ → r as f → 0, i.e.,
for detailed balance dynamics, so that Eq. (7) cannot be
simplified to Eq. (9).
The second example represents energy transfer between

two heat baths (at inverse temperatures kBβh and kBβc,
respectively) mediated by a two-level system. The latter
performs Markovian jumps (corresponding to Poisson
processes dNν

i→j) between the two states i ¼ f1; 2g of
energy ϵi with rates wν

i→j ¼ e−βνðϵj−ϵiÞ=2 associated with the
baths ν ¼ fh; cg. We define the process as the transfer of an
energy E in a fixed time δ into the cold bath ν ¼ c:

O¼ ðϵ2 − ϵ1Þ
Z

δ

0

dt0
�
dNc

2→1

dt0
−
dNc

1→2

dt0

�
; D¼ ½E;∞Þ:

ð12Þ

One may think of E as an activation energy (e.g., of
reaction [40]) and of δ as the timescale over which it may be
dissipated. For large δ−1 and/or E > 0 (with respect to the

FIG. 1. Speed limit for the dynamics Eq. (10) with process
Eq. (11), obtained by numerical averages over 104 trajectories
with time steps Δt ¼ 10−2, a ¼ 1, β−1 ¼ 0.7; f ¼ 0.5;
N ¼ 11, kB ¼ 1. Dashed and dotted lines correspond to the
analytical value of h _Sei and 1=T , respectively. Inset: sketch of the
dynamics Eq. (10).

FIG. 2. Speed limit for the dynamics Eq. (10) with process
Eq. (11), obtained by numerical averages over 104 trajectories
with time steps Δt ¼ 10−2, a ¼ 1, β−1 ¼ 0.07; f ¼ 0.6; N ¼ 2,
kB ¼ 1. Dashed and dotted lines correspond to the weak-noise
estimation of h _Sei and r ¼ 1=T , respectively. Inset: the time
averaged values of h _Seis (filled) and r (empty) as a function of the
tilt f. At short times t ≲ 103 and small tilt f ≲ 0.4 the numerical
estimation of r is impeded by the finite statistics.
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rates wν
i→j and the energy gap Δϵ ≔ jϵ1 − ϵ2j, respectively)

the process is realized by large fluctuations and, therefore,
is rare. The rate of the reverse process, defined
by extracting an energy larger than E in the time δ
from the cold reservoir, is in comparison negligible.
Equation (9) holds true for rate r and the entropy
flow h _Seis̃≃h _Sei¼kBð1=βc−1=βhÞðeðΔϵβh=2Þ−eðΔϵβc=2ÞÞ
ðeðΔϵβh=2ÞþðΔϵβc=2Þ þ1Þ−1, which are found to be constant
(Fig. 3).
These two examples suggest that currents are natural

observables to which our theory applies. For integrated
currents, i.e., ÕðωtÞ ¼ −OðωtÞ, Eq. (9) can be directly
derived from the steady state fluctuation theorem [34]. For
such observables, Eq. (9) can be retrieved as a special case
of a bound derived in Ref. [41] for the mean time
required to identify time-reversal breaking in stationary
Markovian dynamics. Also, a result complementary to ours
based on large deviations theory is known, which holds
whenO is an integrated current [20] (respectively, counting
observable [21]) scaling linearly with t. It lower bounds T 2

by the variance of τ times the entropy flux (respectively, the
dynamical activity). Our theory, instead, provides an upper
bound only based on the entropy flux that is not restricted
to Markovian dynamics or to currents extensive in the
trajectory duration t.
Moreover, our approach can be extended beyond

stationarity. Systems subject to time-dependent driving
(with period td) can be treated with a slight modification
of the above derivation which includes time reversal of the
driving protocols λðt0Þ ↦ λðt − t0Þ both in the dynamics
and in the initial probability of time-reversed trajectories

[42], which we take as the periodic steady state ρλðtÞðxtÞ
at the final value of the protocol λðtÞ. Then, Eq. (7)
generalizes to

1

kB

Z
t

0

dt0h _ΣiBs̃ ≥
Z

t

0

dt0ðrF − r̃BÞ; ð13Þ

which bounds the difference of the rates of the forward (rF)
and backward (rB) process with the dissipation in the
backward dynamics. Assuming again that the backward
process is much rarer, Eq. (13) integrated over n driving

periods gives h _SeiB=kB ≥ rFn which bounds the time-
averaged rate rFn ≔ ð1=ntdÞ

R ntd
0 dt0rFðt0Þ in terms of the

time-averaged entropy flux h _SeiB ≔ ð1=tdÞ
R td
0 dt0h _SeiF.

When the driving period td is much shorter than the inverse
of the time-averaged rate, i.e., td ≪ 1=rFn for all n, it
follows the uncertainty relation

h _SeiBT ≥ kB; ð14Þ

for the mean time of the forward process T . Note that for
time-symmetric protocols, λðtÞ ¼ λ̃ðtÞ, forward and back-
ward dynamics coincide.
The derivation still holds in the most general case of

driven transient dynamics choosing the solution of the
forward dynamics at time t as the initial probability of the
time-reversed trajectories. For times in which the backward
process is negligibly rare, we find

1

kB

Z
t

0

dt0ðhdS=dt0iB þ h _SeiBÞ ≥
Z

t

0

dt0rF: ð15Þ

The time derivative of the Shannon entropy appearing in
Eq. (15) is essential to bound the instantaneous rate during
transients. For example, the rate of the process Eq. (11)
for the dynamics Eq. (10) with a ¼ 0, starting from
a sharply peaked probability, has the long-time asymp-
totics rðtÞ ∼ 1=ð2tÞ þ f2β=4 ¼ ðdSG=dtþ h _Sei=4Þ=kB,
with SG ¼ logð4πet=βÞ=2 the Shannon entropy of the
transient Gaussian probability of drifted diffusion [34].
This result shows that our most general bound [Eq. (15)]
can be rather tight. In fact, while our speed limits assert that
a large dissipation allows for a fast process, they do not
imply that increasing dissipation will necessarily speed up
the process. As for thermodynamic uncertainty relations
[7,8], kinetics aspects of the dynamics are essential to
determine the tightness of the bound [43].
Finally, our method can be generalized to processes such

that Ωs ¼ Ω̃s, by using an appropriate auxiliary dynamics
in Eq. (3). This general strategy yields system-specific
bounds for processes that break symmetries other than time
reversal (such as reflection). For example, for the dynamics
Eq. (10) with a ¼ 0 (not invariant under f ↦ −f) between
two absorbing boundaries (for which Ωs ¼ Ω̃s), the bound

FIG. 3. Speed limit for the two-state system of the main text
with process Eq. (12), obtained by numerical averages over
105 Gillespie trajectories with 1=βh ¼ 1.5; 1=βc ¼ 0.5; ϵ2 ¼ 1;
ϵ1 ¼ 0; E ¼ 5; δ ¼ 6; kB ¼ 1. The dashed line corresponds to
h _Sei. At short times t≲ 50 the numerical estimation of rðtÞ is
impeded by the finite statistics. Inset: time-averaged value of
h _Seis̃ (filled) and r (empty) as function of Δβ ≔ βc − βh at fixed
average temperature ð1=βc þ 1=βhÞ=2 ¼ 1.
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r ≤ h _Sei=4kB can be derived by using an auxiliary dynam-
ics with zero drift f [34]. This retrieves a known result for
open Hamiltonian systems in which large-scale particle
leakage is compatible with a drifted diffusive process
[44–46] and thus suggests an interesting link to the
escape-rate theory of deterministic dynamical systems.
In summary, resorting to the concept of first passage time

we have defined the physical process that a stochastic
system can perform, and irrespective of many details of the
stochastic dynamics, we have shown that its rate is upper
bounded by the entropy production rate. In particular,
the integrated rate of stationary (respectively, periodic)
processes, that do not involve (respectively, any net)
transformation of states, is bounded solely by the (time-
averaged) entropy flux in the reservoirs. These results call
for an extension of stochastic thermodynamics to systems
with escape, also given the recent work on the second law at
stopping times [23], and the renewed fundamental interest
in unstable dynamics [47,48]. Also, they show manifestly,
together with the recent thermodynamic uncertainty rela-
tions, how thermodynamics constrains nonequilibrium
dynamics and they hint at a general emerging tradeoff
between speed, precision, accuracy, and dissipation
[49–52], in which the role of information [53–56] only
awaits to be explicitly uncovered.
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