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In this work, we address the question of how a closed quantum system thermalizes in the presence of a
random external potential. By investigating the quench dynamics of the isolated quantum spherical p-spin
model, a paradigmatic model of a mean-field glass, we aim to shed new light on this complex problem.
Employing a closed-time Schwinger-Keldysh path integral formalism, we first initialize the system in a
random, infinite-temperature configuration and allow it to equilibrate in contact with a thermal bath before
switching off the bath and performing a quench. We find evidence that increasing the strength of either the
interactions or the quantum fluctuations can act to lower the effective temperature of the isolated system
and stabilize glassy behavior.
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Introduction.—Understanding how and why many-body
systems can fail to reach thermal equilibrium is both of
fundamental value, as it allows us to test the hypothesis
underlying equilibrium statistical physics, and of practical
interest. In fact systems which fail to equilibrate can often
exhibit rich new dynamical phenomena not seen in typical
thermal states [1–4]
Two main mechanisms of ergodicity breaking in many-

body quantum systems have emerged recently. On the one
hand, quantum integrable systems have an extensive
number of conserved charges and so do not thermalize
to a state whose macroscopic properties are determined by
only a few quantities (such as energy and density) [5]. On
the other hand, the interplay of disorder and interactions
can give rise to a robust mechanism for ergodicity breaking,
the many-body equivalent of Anderson localization, a.k.a.
many body localization (MBL), which does not require fine
tuning to (typically isolated) integrable points. The absence
of thermalization in MBL is related to an emergent
integrability [6–10].
In between those two limits, for which thermalization

fails on all timescales, there is a huge class of systems for
which thermalization is possible but only on very long
timescales. These are glassy systems, whose dynamics
display ergodicity breaking due to metastability. In this
case, the dynamical evolution is trapped by exponentially
many metastable states that forbid equilibration on short
timescales. In finite dimensions, such metastable states
have a finite (but very long) lifetime, while in the mean
field limit their lifetime diverges with the system size (or
dimension) due to the divergence of the free energy barriers
between them. Nevertheless those systems are never
completely out of equilibrium since in the end they relax

on timescales that scale exponentially in either the system

size or dimension [11,12].
In contrast with MBL and integrable systems, glassy

systems do not depend crucially on isolation from their
environment and indeed most investigations on the
dynamical behavior of quantum glasses have focused
on a dissipative setting, where the system is coupled to a
thermal bath. Here important progress has been achieved
through the solution of simplified fully connected models
[13–18]. An interesting question which has received far
less attention concerns the dynamics of isolated quantum
glasses. Recently, the properties of highly excited eigen-
states of paradigmatic mean field models of quantum
glasses and their resulting dynamics have been inves-
tigated numerically through exact diagonalization of
finite size systems [19], analytically using forward
scattering approximations [20–22], and more recently
through a mapping to the Rosenzweig-Porter random
matrix model [23]. Yet, in the thermodynamic limit the
dynamical behavior of those quantum mean field
models can be solved exactly using field theory tech-
niques similar to those well developed for classical
models [11].
In this work we extend those techniques to the quantum

case, by focusing on the unitary dynamics of the isolated
spherical quantum p-spin model, a paradigmatic example
of a mean-field glass, whose Hamiltonian

H ¼ 1

2m

X
i

Π2
i − J ðtÞ

XN
i1<���<ip

Ji1…ipσi1…σip ð1Þ

describes a set of spins σi all-to-all coupled by random
p-body interactions Ji1…ip drawn from a Gaussian
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distribution with zero mean and unit variance. To make the
model more tractable but still nontrivial, we treat the spins
as continuous variables [24] and enforce the spherical
constraint

P
N
i σ2i ¼ N by adding a Lagrange multiplier

(hereafter denoted z). We further add a conjugate momen-
tum Πi where ½Πi; σj� ¼ iℏðtÞδij are canonical commuta-
tion relations, and we allow ℏðtÞ to be time dependent in
order to be able to change the strength of quantum
fluctuations—for details, see the Supplemental Material
[25]. This model has been extensively studied in both its
classical [11,34–40] and quantum version, when coupled to
a thermal bath [13–15,17,42–44]. At low temperature it
displays a dynamical glass transition at a temperature Td
due to the emergence of long-lived glassy states. Below this
tempera-
ture equilibration is never reached and the system ages
forever (but not on exponential timescales). The dynamical
temperature is a decreasing function of the strength of
quantum fluctuations, as one may expect [14]. Though the
isolated dynamics of the quantum p-spin model have not
previously been studied, the classical isolated dynamics
was recently investigated in Ref. [45]. Here we study the
quantum evolution of this model: we prepare the system at
some temperature T0 in the paramagnetic phase and then
we suddenly change both the strength of random couplings
J ðtÞ and the strength of quantum fluctuations measured by
ℏðtÞ, keeping the system isolated. The resulting nonequi-
librium phase diagram, plotted in Fig. 1, features a high-
temperature paramagnetic phase, where the system relaxes
toward equilibrium, and a low-temperature phase where
aging and breakdown of time-translational invariance

emerge. Surprisingly, we find that the phase boundary
between the paramagnetic and aging regimes strongly
depends on whether quantum fluctuations are kept constant
(left panel) or suddenly changed (right panel) throughout
the evolution. In the former case the aging regime shrinks
with respect to its classical counterpart, as expected
thermodynamically. In the latter, we find that a sudden
increase of quantum fluctuations promotes rather than
suppresses glassy effects (right panel, top curve), in striking
contrast with the expectation based on the canonical
equilibrium case of a system in contact with a finite
temperature bath [13–15]. Such enhancement of aging
effects is due to an interplay of quantum fluctuations
and nonequilibrium effects. We interpret this intriguing
result in terms of an effective temperature Teff < T0 for the
isolated disordered quantum system, which in the absence
of an external thermal bath is able to cool itself down
through quantum fluctuations, eventually crossing the glass
transition.
Dynamical equations for correlation and response.—

Throughout this work we will focus in particular on the
dynamics of correlation and response functions, which are
defined by

Cðt; t0Þ ¼ 1

2
h½σðtÞ; σðt0Þ�þi; ð2Þ

Rðt; t0Þ ¼ θðt − t0Þ i
ℏðt0Þ h½σðtÞ; σðt

0Þ�−i; ð3Þ

where ½A; B�� ¼ AB� BA. The fully connected nature of
the model defined in Eq. (1) allows us to derive closed
dynamical equations that describe the evolution of
correlation and response functions starting from an
uncorrelated infinite temperature initial state. After disorder
averaging and taking the N → ∞ limit, the equations of
motion for the correlation and response functions can
be obtained following the method of Ref. [42] and are
given by

½m∂2
t þ zðtÞ�Rðt; t0Þ ¼ δðt − t0Þ þ

Z
∞

0

dt00Σðt; t00ÞRðt00; tÞ;

ð4Þ

½m∂2
t þ zðtÞ�Cðt; t0Þ ¼

Z
∞

0

dt00Σðt; t00ÞCðt00; t0Þ;

þ
Z

t0

0

dt00Dðt; t00ÞRðt0; t00Þ; ð5Þ

where we have defined the self-energies Σðt; t0Þ and
Dðt; t0Þ as

Σðt; t0Þ ¼ −
pJ ðtÞJ ðt0Þ

ℏðt0Þ Im

�
Cðt; t0Þ − iℏðt0Þ

2
Rðt; t0Þ

�
p−1

ð6Þ

FIG. 1. Dynamical phase diagrams, as a function of initial
temperature T0 and strength of the interaction quench J F=J 0, in
two different scenarios. (a) (Left panel) The strength of quantum
fluctuations is kept constant throughout the evolution, i.e.,
ℏ0 ¼ ℏF. In the classical case (top line) below a certain tempera-
ture the dynamics of the system displays aging. Finite quantum
fluctuations suppress the aging regime (bottom line), as expected
thermodynamically. (b) (Right panel) When the strength of
quantum fluctuations is suddenly increased, ℏF > ℏ0, the aging
regime is enhanced (top curve) with respect to the classical phase
diagram (dashed line). Vice versa, decreasing quantum fluctua-
tions makes the aging regime shrink (bottom curve). Details of
how the boundaries were obtained are given in the main text.
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Dðt;t0Þ¼pJ ðtÞJ ðt0Þ
2

×Re

�
Cðt;t0Þ− i

2
½ℏðt0ÞRðt;t0ÞþℏðtÞRðt0;tÞ�

�
p−1

:

ð7Þ

With respect to the classical dynamical equations [45],
Eqs. (6)–(7) have extra self-energy contributions pro-
portional to ℏðtÞ which arise from purely quantum fluctua-
tions [13]. We perform the dynamical evolution subject to a
time-dependent Lagrange multiplier zðtÞ used to enforce
the global spherical constraint. We can derive the dynami-
cal equation for this by taking the equal-time limit of
Eq. (5) to obtain [42]

zðtÞ ¼
Z

t

0

dt00½Σðt; t00ÞCðt00; tÞ þDðt; t00ÞRðt; t00Þ�

−m∂2
t Cðt; t0Þjt0→t− : ð8Þ

Equations (4), (5), and (8) are the three dynamical
equations whose solution we will discuss in the rest of
the Letter. Their causal structure allows for a simple
discretization and numerical solution; for further details,
see the Supplemental Material [25].
Finite temperature initial state preparation and double

quench.—The dynamical equations [(4), (5), and (8)]
describe the evolution of the system from an initial infinite
temperature initial state uncorrelated with the disorder.
Here we are instead interested in studying dynamics from
an initial finite temperature state, which would, in principle,
require a three branch Keldysh contour structure as recently
discussed [46]. We instead perform the initial thermal-
ization numerically through a double-quench protocol.
Specifically, we first quench from infinite temperature to
some T0 > Td (where Td is the equilibrium dynamical
temperature of the spin glass transition) and J ð0 < t <
tqÞ≡ J 0 ¼ 1 and ℏð0 < t < tqÞ≡ ℏ0 and allow the sys-
tem to thermalize in contact with a thermal bath, which we
assume to be a set of harmonic oscillators in thermal
equilibrium at some temperature T0, as in Ref. [13]. This
results in modified self-energies Σ̃ðt; t0Þ and D̃ðt; t0Þ in
Eq. (7) due to the bath coupling, whose explicit expressions
are given in Ref. [25]. Then, for t ≥ tq we switch off the
coupling to the bath and let the system evolve unitarily with
J ðt ≥ tqÞ≡ J F and ℏðt ≥ tqÞ≡ ℏF. All temperatures are
measured in units of J 0. Supporting data demonstrating
that our system is well equilibrated to the bath temperature
are shown in the Supplemental Material [25].
Results.—For concreteness we will set p ¼ 3, though we

expect our results to hold for any p > 2. In Fig. 2 we plot
the dynamics of correlation function Cðτ þ tw; twÞ at fixed
J 0 ¼ 1 for different types of quenches. We first study the
dynamics keeping fixed the strength of quantum fluctua-
tions while quenching J [panel (a)]. We see that increasing
J F > J 0 results in a slowdown of the dynamics and a
plateau in the correlation function begins to emerge. Such a
plateau is associated with a nonzero Edwards-Anderson
glassy order parameter. In the classical case ℏF ¼ ℏ0 ¼ 0
we therefore recover the results of Ref. [45], while in the
quantum case ℏF ¼ ℏ0 ¼ 1 (see inset) we see that similar
quenches of J do not lead to a well-formed plateau,
indicating that the quantum aging boundary shifts toward
larger values of J F=J 0. This is consistent with the naive
expectation that quantum fluctuations suppress aging
behavior. The resulting phase diagram is shown in
Fig. 1(a). A rather different picture emerges instead when
quantum fluctuations are suddenly quenched rather than
kept fixed, as we show in Fig. 2(b). Keeping the interaction
fixed, J F ¼ J 0, and increasing the quantum fluctuations
(main panel) strongly enhances the aging behavior of the
system, as shown by the formation of a plateau and a
waiting time dependence. On the contrary, reducing the
value of ℏF < ℏ0 leads to a rapid relaxation (inset). This
surprising outcome for a quench of ℏ is further highlighted

FIG. 2. Correlation functions after the second quench for a
variety of different parameters, with N ¼ 15000 steps, tmax ¼
100 and tq ¼ tmax=2. In each case, J 0 ¼ 1.0 and the wait times
are tw ¼ 16.67 (dotted), tw ¼ 30 (dashed), and tw ¼ 40 (solid).
(a) Quench of J in the classical (main panel) and quantum (inset)
model, at T0 ¼ 0.8. Quenches with J F < J 0 pump energy into
the system, while quenches with J F > J 0 extract energy and can
lead to aging behavior. (b) Quench of quantum fluctuations, for
T0 ¼ 0.9 and J F ¼ 1. A plateau emerges as ℏF is increased
starting from the classical limit. Vice versa, decreasing quantum
fluctuations make the system thermalize rapidly (inset). (c) Role
of initial temperature, for J F ¼ J 0 ¼ 1 and a sudden increase
(main panel) or decrease (inset) of quantum fluctuations. In the
first case lowering the temperature leads to a dynamical glass
transition, consistent with the shifted phase boundary of Fig. 1(b).
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in panel (c), where the dynamics for different initial
temperature T0 is studied. In particular we see that for
an increase of ℏ (main panel) the system upon cooling
crosses a dynamical glass transition, even in absence of an
interaction quench (J F ¼ J 0), and for temperature well
above the classical Td. On the contrary, decreasing ℏ
always keep the system in the paramagnetic phase.
Those results therefore suggest that the aging regime
is increased when quantum fluctuations are suddenly
switched on, as we summarize in Fig. 1(b).
We remark that for the timescales accessible to our

current simulations, the correlation function still decays
and does not display a true plateau: this is likely an effect of
not being able to access sufficiently long waiting times tw to
see the true plateau, as evidenced by the strengthening
of the plateau for larger tw. By approximating Cðτ þ
tw; twÞjτ→∞ by the value of the correlation function at
the longest times accessible to our simulation, and iden-
tifying this value with the Edwards-Anderson order para-
meter qEA, we can plot an approximate nonequilibrium
phase diagram for the isolated quantum system, shown in
Fig. 1. Within our simulation times, as clearly shown by
Fig. 2, we cannot reach the true t → ∞ value of qEA.
Instead, we can set a threshold value and approximate that
all q ≤ qth are slowly decaying paramagnetic solutions,
whereas for q > qth the system is in a true glassy phase.
The results of this are shown in the phase diagram in Fig. 1
by dashed lines, using qth ≈ 0.2, though the qualitative
shape of the phase diagram does not depend strongly on
this choice [47].
Effective temperature and quench-induced cooling.—

The results presented above indicate that quantum fluctua-
tions and nonequilibrium effects can strongly enhance
glassiness and increase the region of parameters where
aging effects are observed. This is surprising at first, since
glassiness is a low temperature property, while exciting the
system with a global quantum quench injects extensive
energy and should intuitively induce heating [48,49]. We
can understand this effect in terms of an effective thermal-
ization of the isolated system to an effective temperature
Teff , as we show in detail by looking at the fluctuation-
dissipation theorem (FDT) in the long-time regime of the
dynamical equations for correlation and response [25]. In
Fig. 3 we show that the Teff extracted from FDT decreases
with ℏF and eventually reaches the dynamical critical
temperature Td for the glass transition, below which the
system fails to thermalize. By extracting the local minimum
of Teff from Fig. 3 and identifying it with the transition in
our numerical data, we can draw a phase boundary with no
free parameters, shown in Fig. 1 by the solid lines.
Interestingly, the same effect of cooling by quantum
fluctuations emerges from basic energetic arguments:
indeed the effective temperature can be also estimated
by comparing the postquench energy EQ, which is con-
served during the unitary evolution, to the equilibrium

internal energy of the system at a given value of ℏF, i.e.,
EQ ¼ UðTeff ;ℏFÞ. Solving this equation for our model in
the static approximation [14,25], which is valid in the high
temperature phase under consideration, we obtain a
thermodynamic estimate for Teff which almost perfectly
matches the dynamical one obtained from FDT in the
regime where the system thermalizes (see light blue line
in Fig. 3).
Discussion.—In our specific model (1) the strength of

quantum fluctuations is controlled by the magnitude of ℏ. A
natural question concerns whether the qualitative picture
we presented so far would change in more realistic
situations where quantum fluctuations are controlled by
the action of a transverse field Γ, such as in the Ising p-spin
quantum glass [50–53]. In thermal equilibrium it is known
that the spherical and the Ising p-spin share much of their
physics [14,17,54,55], including the phase diagram that
features a quantum glass to paramagnet phase transition
driven by the strength of quantum fluctuations, encoded,
respectively, in ℏ or Γ. Whether this analogy remains valid
also for the out of equilibrium dynamics is a priori not
obvious. Using energetic arguments [25] we estimate the
effective temperature in the Ising p-spin after a quantum
quench of the transverse field and show that, indeed, this
quantity shows the same qualitative behavior in the two
models. In particular we show that also in the Ising p-spin
an increase of quantum fluctuation (i.e., a quench to a larger
value of Γ) can lead to a decrease of the effective tempera-
ture, i.e., a cooling through quantum fluctuations that
appears therefore a robust feature of isolated quantum
glasses. This result is also of practical relevance, since
quantum simulation of Ising p-spin models can be realized
using arrays of superconducting qubits, which are modeled
as two level systems with random Ising couplings and
transverse fields, the latter tunable in real time and therefore

FIG. 3. Effective temperature Teff after the second quench for a
system initially equilibrated at T0 ¼ 0.8, J F ¼ J 0 ¼ 1.0, and
ℏ0 ¼ 0, obtained from the dynamical equation and the fluc-
tuation-dissipation relation (blue points). As the strength of
quantum fluctuations is increased, Teff decreases until it reaches
approximately the dynamical temperature Td (red points, ob-
tained from dynamical simulations in the presence of a thermal
bath), here at a value ℏF ≈ 0.7. Beyond this, Teff displays the
same nonmonotonic behavior seen in Ref. [45], indicating a
violation of FDT and suggesting that the system has entered the
glass phase. For comparison, the thermodynamic estimate for Teff
(see main text) is shown as a light blue line and matches almost
perfectly the dynamical one. Other parameters N ¼ 15000 and
tmax ¼ 100, with tq ¼ tmax=2.
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amenable to sudden or slow quenches. In fact, these
protocols are routinely explored in the field of quantum
annealing [56]. Superconducting qubits also offer enough
flexibility in fabrication and design such that arranging
effective multispin interactions, such as those relevant
for our p spin with p > 2, has indeed been already reported
[57,58].
Conclusions.—In this work we have studied the quench

dynamics of an isolated quantum glass. Remarkably, we
have shown that suddenly increasing the strength of
quantum fluctuations enhances aging behavior, in contra-
diction with common expectations based on the physics of
quantum glasses coupled to the thermal environment. The
key feature of this effect relies on a “cooling by quantum
fluctuations” effect that we have shown to hold also for the
more realistic Ising p-spin case, a model which can be
quantum simulated using superconducting qubits.
Interesting future directions include starting from a low

temperature glass phase at T < Td, for which the corre-
sponding dynamical equations are already available in
Ref. [46], to see how the quantum glasses respond to
nonequilibrium perturbations as well as to study the effect
of a smooth quench protocol with finite duration, which
may connect our results with investigations on quantum
annealing done on related quantum glass models [53,59].
Solving the full real-time dynamics for other mean
field models of isolated quantum glasses, such as the
Ising p spin and the quantum Random Energy Model,
using similar techniques would also be an interesting
direction to take.
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