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Data structure has a dramatic impact on the properties of neural networks, yet its significance in the
established theoretical frameworks is poorly understood. Here we compute the Vapnik-Chervonenkis
entropy of a kernel machine operating on data grouped into equally labeled subsets. At variance with the
unstructured scenario, entropy is nonmonotonic in the size of the training set, and displays an additional
critical point besides the storage capacity. Remarkably, the same behavior occurs in margin classifiers even
with randomly labeled data, as is elucidated by identifying the synaptic volume encoding the transition.
These findings reveal aspects of expressivity lying beyond the condensed description provided by the
storage capacity, and they indicate the path towards more realistic bounds for the generalization error of
neural networks.

DOI: 10.1103/PhysRevLett.125.120601

Introduction.—The success of deep learning has trans-
formed data science profoundly in the last decade, within
and outside physics [1–3]. In spite of the accomplishments
in practical applications, we are currently facing a lack of
fundamental theoretical understanding in the field [4,5].
Outstanding open questions concern the surprising effec-
tiveness of stochastic gradient descent, which is capable of
finding good minima in complex energy landscapes, and
the identification of informative metrics to predict the
performances of deep (many small layers) and shallow
(few large layers) neural networks [6–8]. Particularly
troublesome is the apparent incompatibility, within the
accepted mathematical theories, between the expressive
power and the generalization abilities of neural networks:
ultimately, the reason why deep architectures with millions
of parameters generalize well is mostly unknown [9–13].
A natural frame for these issues is statistical learning

theory [14], which provides upper bounds to the probability
of observing a large generalization error from a learning
model with a given complexity. These bounds are often
distribution independent, i.e, they are uniform in the
generative model for the training data. The downside of
their universality is their tendency to be too loose to be
useful in practice. New measures of complexity are being
studied to fill this gap, and the urgency of formulating data-
dependent theories is widely expressed in the computer
science literature [15–18].
While mathematical bounds usually address worst-case

generalization, the main originality of the statistical physics
approach is the analysis of the typical case; the distribution
of the training data is therefore always an explicit ingre-
dient of the computations. However, since the classic work
of Gardner [19], data distribution has been regularly
assumed to be factorized between the inputs and their

labels (with the important exception of the so-called
teacher-student scenario [20–22] where, nonetheless, the
inputs are usually independent identically distributed ran-
dom variables), thus leaving no room for their dependence,
which is in essence what we call “data structure” here. This
attitude is changing, and there is now a surge of interest
towards the role of data in machine learning, with the goal
of quantifying the extent to which the specificities of a
dataset affect the performance of data-science methods and
learning algorithms [23–31].
The main objective of this Letter is to investigate the

effect that data structure has on the model complexity of
simple architectures in machine learning. Previous research
in the physics literature addressed this question via the
traditional concept of storage capacity αc, which measures
the maximum load α (number of data points over number of
parameters) that a model can learn with probability 1 in the
thermodynamic limit. By viewing supervised learning as a
constraint satisfaction problem, capacity corresponds to the
transition between a satisfiable (SAT) and an unsatisfiable
(UNSAT) phase, above which perfect training accuracy is
achievable with probability 0. (It is worth remarking that
this transition disappears if labels are provided by another,
less expressive, neural network, as in the teacher-student
framework.) Here we show that the compact description of
learning provided by the capacity hides important detail
about the model, related to its expressive power on
structured data. Our point of originality is the shift from
the capacity to a quantity borrowed from the foundations of
statistical learning theory: the Vapnik-Chervonenkis (VC)
entropy. We show that the VC entropy is nonmonotonic as a
function of the load, and decreases asymptotically, at
variance with the data-agnostic setting. This also contrasts
with the classic bounds in statistical learning theory, which
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are mostly obtained by upper bounding the VC entropy
with quantities that grow polynomially in the size of the
training set [32,33]. The hallmark of this nonmonotonic
behavior is an additional phase transition above the storage
capacity. The new critical point signals the entrance into the
UNSAT phase of another satisfiability problem, related to
data structure.
Cover’s computation.—The VC entropy measures the

expressive power of a classifier via the number of distinct
dichotomies of the input data that the model can represent.
A dichotomy is a function taking values in f0; 1g;
equivalently, it is a classification of the input data in two
groups. In principle, the VC entropy could give rise to
informative bounds on the generalization error (the average
number of errors on the test set), but it is usually very
difficult to compute explicitly, thus statistical learning
theory resorts to more accessible complexity measures.
Kernel architectures are a notable exception. Here the

original input x ∈ Rd is mapped to a larger n-dimensional
feature vector via a fixed nonlinear function ϕ∶Rd → Rn

(for instance, quadratic kernels map the input in a
dðdþ 1Þ=2-dimensional space via a function ϕð2Þ with

components ϕð2Þ
ij ðxÞ ¼ xixj, with i; j ¼ 1;…; d and j ≤ i).

The VC entropy of kernel machines was obtained analyti-
cally in a remarkable paper by Cover more than half a
century ago [34]. Cover calculated the number Cn;p of
dichotomies as a function of the number p of data points
and the dimension n; the VC entropy isHn;p ¼ logCn;p. In
the thermodynamic limit, i.e., n; p → ∞ with fixed load
α ¼ p=n, the fraction of dichotomies Cn;p=2p is discon-
tinuous at the storage capacity αc (αc ¼ 2 for the spherical
perceptron). Remarkably, Cover’s formula holds on very
mild assumptions on the actual data points; this suggests
that statistical dependence between the inputs and their
labels must be conceded if one is to attain data-aware
estimates. Very recently the combinatorial technique
devised by Cover was extended to include this type of
data structure [35], allowing the computation of the number
of “admissible” dichotomies, i.e., those that are compatible
with the data structure [see Fig. 1(a)].
VC entropy in a simple model of data structure.—How

to formulate a significant notion of data structure is a
debated issue, and different descriptions are useful
in different contexts [23,25,36,37]. Here we use the
definition of Ref. [35]. Data points are grouped into p
subsets of k points each, where the labels are the same
within each subset, and the geometric relations between
points in a subset are fixed. More precisely, the input set is
Ξ ¼∪p

μ¼1 Ξμ, where each Ξμ ¼ fξμaga¼1;…;k is a set (“multi-
plet”) of k points on the unit sphere ξμa ∈ Sn−1 ⊂ Rn such
that their kðk − 1Þ=2 overlaps are fixed: ξμa · ξμb ¼ ρab for all
μ ¼ 1;…; p. The ensemble we consider is the flat prob-
ability measure on the kp points ξμa, conditioned to these
constraints. The admissible dichotomies ϕ of Ξ are those
for which ϕðξμaÞ ¼ ϕðξμbÞ for all a; b ¼ 1;…; k and
μ ¼ 1;…; p. The usual unstructured ensemble is recovered
either when k ¼ 1 (where no overlaps need to be specified),
or, for any k, when ρab ¼ 1 for all a, b. We stress that
structure, in this definition, is not a property of the inputs or
of the labels alone: it describes the relations between inputs
and labels. This model of data structure is closely related to
the concept of “perceptual manifolds” inspired by neuro-
science [25,38], and was recognized in Ref. [31] as a
promising theoretical tool to address the problem of
generalization.
The average number of admissible dichotomiesCn;p of p

sets of k points (the logarithm of which is the VC entropy
Hn;p) satisfies the mean-field recurrence relation [35]

Cn;pþ1 ¼
Xk
l¼0

θkl Cn−l;p: ð1Þ

The boundary conditions depend mildly on the geometry,
but they can be approximated by Cn≥1;1 ¼ 2, C0;p ¼ 0.
Each coefficient θkl in Eq. (1) depends on k − 1 numbers
fψmgm¼2;…;k, with 0 ≤ ψm ≤ 1, having the following geo-
metric-probabilistic interpretation. Let w ∈ Sn−1 be a

FIG. 1. (a) Input data are structured as groups of points sharing
the same label (pink ¼ þ1, blue ¼ −1). Each sphere denotes, in a
stylized way, a group of points. Singly colored spheres contribute
to admissible dichotomies; conversely, a dichotomy containing a
doubly colored sphere is not admissible. (b),(c) The VC entropy
Hn;p is the logarithm of the number Cn;p of expressible
dichotomies such that no two points belonging to the same
group are classified differently. Cn;p and Hn;p are monotonic in
the load for unstructured data and nonmonotonic for structured
data. Solid lines are the theory for pairs of points (k ¼ 2); dashed
lines are Cover’s result (k ¼ 1); from bottom to top, n ¼ 3, 4, 5 in
(b) and n ¼ 5, 10, 20, 40 in (c); symbols are numerical estimates.
The VC entropies at different values of n intersect roughly at the
same load α�, which separates two phases, where admissible
dichotomies are asymptotically present or absent.
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random vector with the uniform measure on the unit sphere.
Consider any multiplet Ξμ, and a subset Ξ0 ⊆ Ξμ of m ≤ k
points. Then ψm is the symmetrized probability that the
scalar product w · ξ has the same sign for all ξ ∈ Ξ0, condi-
tioned on it having the same sign for all ξ∈Ξ0nfξ⋆g:
ψm¼2hPr½ðw·ξ⋆Þ>0jðw·ξÞ>0∀ξ∈Ξ0nfξ⋆g�isym, where
the symmetrization h� � �isym is performed by averaging over
all subsets Ξ0 and over all choices of ξ⋆ ∈ Ξ0. These
quantities can be expressed in terms of the overlaps ρab,
e.g., ψ2ðρÞ ¼ 2π−1 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ρÞ=ð1 − ρÞp
.

Remarkable differences between structured and unstruc-
tured data appear if one compares numerical solutions of
Eq. (1) for k ¼ 1 (unstructured) and k ¼ 2 (structured)
(Fig. 1). The VC entropyHn;αn, as a function of α at fixed n,
diverges with α in the unstructured case (it does logarithmi-
cally, thus the fraction of realizable dichotomies Cn;αn=2αn

converges to 0 for α → ∞). On the contrary, Hn;αn is
nonmonotonic in the load for structured data, and Cn;α n is
itself asymptotically 0. Strikingly, curves corresponding to
different values of n cross each other roughly at the same
load α�, similarly to what Cn;αn=2αn does around the
storage capacity αc. Hence, in the thermodynamic limit
the VC entropy diverges toþ∞ for fixed α < α� and to−∞
for α > α�. As will be elucidated by the following compu-
tations, this transition is driven by a trade-off between an
entropic term, related to the combinatorial growth of the
number of dichotomies with the load, and an energetic
term, due to the constraints that define data structure.
Transition point via combinatorial analysis.—The tran-

sition point in the thermodynamic limit is accessible by a
perturbative analysis. In some cases it is possible to solve
Eq. (1) explicitly, but we construct here an indirect method,
based on analytic combinatorics [39]. This method has the
crucial advantage of being applicable despite the fact that
(i) Cn;p is not known in closed form for generic k, and
(ii) the recurrence equation itself has implicitly defined
coefficients (see Ref. [40] for details on the computations,
and for applications to simpler cases where the above
restrictions do not apply).
Let gnðzÞ be the ordinary generating function of Cn;p

with respect to the variable p: gnðzÞ ¼
P∞

p¼1 Cn;pzp. At
fixed n, gnðzÞ encodes the large-p asymptotics of Cn;p via
its singular behavior. In particular, if gnðzÞ is a rational
function the dominant pole of which is of order r and lies at
z ¼ z0, with finite part R≡ limz→z0ðz0 − zÞrgnðzÞ, then, for
large p, Cn;p ∼ Rz−p−r0 Bðpþ r − 1; r − 1Þ, where Bða; bÞ
is the binomial coefficient ðabÞ.
Multiplying Eq. (1) by zp and summing over p (taking

care of the boundary conditions) gives a recurrence relation
for gnðzÞ:

gnðzÞ ¼
z

1 − zθk0

�
2þ

Xk
l¼1

θkl gn−lðzÞ
�
; ð2Þ

with gn≤0ðzÞ ¼ 0. Iteration of Eq. (2) n times, starting from
the nonsingular initial condition at n ¼ 0, yields a singular
gnðzÞ, whose pole, generated by the pole in the right-hand
side of the recurrence relation, lies at z0 ¼ 1=θk0, has order
r ¼ n, and finite part R ¼ 2ðθk1Þn−1ðθk0Þ−2n. Finally, the
asymptotic form of the VC entropy is Hn;αn ∼ logCðα; nÞ,
with

Cðα; nÞ ¼ 2
Γðαnþ nÞ

ΓðnÞΓðαnþ 1Þ ðθ
k
1Þn−1ðθk0Þðα−1Þn: ð3Þ

Conveniently, Cðα; nÞ depends only on the first two θkl ’s
(see Ref. [40] for their expressions as functions of the
probabilities ψm). The transition is at the point α ¼ α�
where the VC entropy is asymptotically constant in n, i.e.,
∂nHn;α�n → 0. From Eq. (3) one obtains

Sðα�Þ þ ðα� − 1Þ log θk0 þ log θk1 ¼ 0; ð4Þ

with SðαÞ≡ ðαþ 1Þ logðαþ 1Þ − α logα. Equation (4)
expresses the trade-off between a positive entropic term
SðαÞ, the same as for unstructured data, and a structure-
dependent energetic term. It has two solutions: α� is the
larger.
Consider the case k ¼ 2, where input data are pairs of

points with fixed pairwise overlap ρ. Then θk0 ¼ ψ2ðρÞ,
θk1 ¼ 1, and α� is an increasing function of ρ. Coherently,
α� diverges when ρ → 1, thus recovering the unstructured
case k ¼ 1, where no transition is present. Figure 2 shows
that (i) the value of α� satisfying Eq. (4) matches that
obtained by numerical integration of the recursion Eq. (1),
and (ii) the transition can be probed by sampling small
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FIG. 2. Phase diagram of the VC entropy for k ¼ 2. The dashed
line is the theoretical prediction for α� obtained by combinatorial
methods; the dotted line is the transition line of the synaptic
volume [Eq. (5)] in the annealed approximation. Empty symbols
are numerical results, obtained by finding the intersection
between two curves Cn1;αn1 and Cn2;αn2 with n1 ¼ 40, n2 ¼ 20

(circles) and n1 ¼ 6, n2 ¼ 3 (triangles); each filled symbol is
obtained by sampling 105 random inputs with n ¼ 3 (red
squares ¼ no admissible dichotomy, green circles ¼ at least
one admissible dichotomy).
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random linear classifiers (see the caption). The pheno-
menology is the same for all k [40].
Similarly to the critical behavior at the SAT-UNSAT

transition of random constraint satisfaction problems
[41,42], the number of dichotomies, as a function of the
reduced control parameter α̂ ¼ ðα − α�Þ=α�, obeys a finite-
size scaling form Cðα; nÞ ¼ n−β=νFðα̂n1=νÞ, with critical
exponents β ¼ 1=2 and ν ¼ 1, where F is a regular
function (see Ref. [40] for the explicit formula). At
α ¼ α�, Cðα; nÞ vanishes as a power law in the dimension-
ality n; the exponent ν controls the scaling of the width
of the critical region (by contrast, ν ¼ 2 at the storage
capacity).
Identification of the relevant synaptic volume.—The

phase transition at α� can be interpreted as the SAT-
UNSAT transition of the following constraint satisfaction
problem: given a realization of the “disorder” Ξ, find a
vector W identifying a linearly realizable dichotomy of Ξ
that is admissible. This characterization indicates that the
following synaptic volume should pinpoint the transition:

VðΞÞ ¼
Z

Dpσ

Z
DnW

Yp;k
μ;a¼1

θ

�
σμ

Xn
i¼1

WiðξμaÞi
�
; ð5Þ

where θ½� � �� is the Heaviside theta, ðξμaÞi denotes the ith
component of the ath element of the μth multiplet, DnW is
a shorthand for a Gaussian or spherical measure over
the weights, and Dpσ ¼ Q

μ½δðσμ − 1Þ þ δðσμ þ 1Þ�dσμ.
Besides the data structure, encoded in the multiplets Ξμ,
the synaptic volume [Eq. (5)] differs from the ordinary
Gardner volume by the integration over the labels σ.
Intuitively, as long as VðΞÞ grows exponentially with n
at fixed load α, at least one classification compatible with
the input-label constraints can be expressed by the model.
Thus, the scaling of VðΞÞ is a proxy of the nonmonotonic
behavior of the VC entropy for a given data structure.
We restrict the analysis to data structured as pairs of

points (k ¼ 2), and we compute VðΞÞ in the simplest
approximation scheme, averaging at the annealed level over
the inputs. (See Ref. [40] for the replica theory.) For ρ ¼ 1
we recover the unstructured case: hVðΞÞi diverges for any
load α, in agreement with Cover’s theory (a polynomial
number of classifications can be realized by a kernel
architecture). The situation changes for ρ < 1. In this
regime data structure becomes relevant, and there appears

a critical load αð2Þ� ðρÞ for which the synaptic volume shrinks
exponentially fast in n. Above this threshold, which is
given by

αð2Þ� ðρÞ ¼ −
logð2πÞ þ 1

2 log ð1=2þ π−1 arcsin ρÞ ; ð6Þ

none of the classifications compatible with the data
structure can be realized by the kernel architecture. The

threshold computed in the annealed approximation pro-
vides a lower bound to the α� evaluated by the combina-
torial approach (see Fig. 2).
Margin-driven transition with unstructured data.—

Margin classifiers are prominent in statistical learning
theory, as their generalization error can be kept under
control via the margin, and they lie at the core of the
powerful idea of support vector machines [33,43]. A
significant observation linking classification with margin
and classification of structured data was done in Ref. [25]:
linear classification with margin κ is equivalent to learning
a set of spherical manifolds with radius equal to the margin.
The equivalence, valid for a kernel machine with kernel φ,
holds in the following sense: the set of d-dimensional
weights W in feature space realizes the mapping with
margin κ if and only if σμ ¼ signðW · ζμÞ for all μ and all ζμ
such that jζμ − φðξμÞj2 < κ2. Intuitively, the constraints of
the satisfiability problem are shifted from the data to the
function class. (If the margin is negative the problem is
no more convex, and bears connections to jamming
phenomena [44]).
This observation suggests that the VC entropy of a

margin classifier with randomly labeled (i.e., unstructured)
data should present the same phenomenology described
above for data structured in multiplets. To our knowledge,
there is no combinatorial technique to compute the entropy
in this case, thus we use an integrated synaptic volume
analogous to Eq. (5) as a probe into the phase transition.
Again, in the annealed approximation, the volume shrinks
exponentially fast above a threshold load, given by

αM� ðκÞ ¼ −
logð2πÞ þ 1

2 log ErfcðκÞ : ð7Þ

As in the case of zero-margin classification of multiplets,
αM� ðκÞ → ∞ when the constraints are relaxed (κ → 0 in this
case), and αM� ðκÞ → 0 when the constraints become unsat-
isfiable (κ → ∞).
Discussion.—Finding compact scalar metrics descriptive

of the complexity and the flexibility of a hypothesis space is
a shared effort of statistical physics and statistical learning
theory. Unsophisticated quantities such as the number of
degrees of freedom are merely superficial indicators of the
expressive power of a given model, and they fail at the task
of characterizing the model’s generalization properties,
especially in applications to nonsynthetic datasets. This
is partly true even for more refined quantities such as the
VC dimension and its distribution-dependent counterparts.
The importance of including data specificities in the
existing frameworks is recognized in both physics and
computer science. In particular, it is well appreciated that
restricting the hypothesis class by imposing a margin is
beneficial to generalization. A large body of work in
modern statistical learning theory is devoted to proving
data-dependent bounds on the generalization error.
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However, these results are obtained by bounding the VC
entropy with monotonically increasing functions of the
sample size p. Our results suggest that, in principle, these
results could be improved substantially already by includ-
ing rather unrestrictive priors on the data distribution.
Here, in the spirit of statistical physics, we have focused

on simple architectures and a simple implementation of
data structure. This approach enabled us to obtain tractable
analytical expressions that serve, in a wider context, as a
proof of principle, and promote two main points: (i) The
concept of storage capacity in the statistical physics of
machine learning should be complemented by other,
preferably data-oriented, “order parameters” of model
complexity. (ii) Data structure, in the form of dependence
or constraints between inputs and labels, should be inves-
tigated in the framework of statistical learning theory,
acknowledging the possibility of an asymptotically
decreasing VC entropy. In this Letter we reported on the
discovery of a data-driven phase transition, which appears
to be a good candidate for the pursuit of point (i). Point
(ii) is explored in more depth in Ref. [40]. How to address
these issues for deep neural networks, or even in more
generality in the context of machine learning, is compelling
matter for future work.
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Zdeborová, Generalisation error in learning with random
features and the hidden manifold model, arXiv:2002
.09339.

[29] V. Erba, S. Ariosto, M. Gherardi, and P. Rotondo, Random
geometric graphs in high dimension, Phys. Rev. E 102,
012306 (2020).

[30] V. Erba, M. Gherardi, and P. Rotondo, Intrinsic dimension
estimation for locally undersampled data, Sci. Rep. 9, 17133
(2019).

[31] F. Borra, M. C. Lagomarsino, P. Rotondo, and M.
Gherardi, Generalization from correlated sets of patterns
in the perceptron, J. Phys. A 52, 384004 (2019).

[32] O. Bousquet, S. Boucheron, and G. Lugosi, Introduction
to statistical learning theory, in Advanced Lectures on
Machine Learning: ML Summer Schools 2003, Canberra,
Australia, 2003, Tübingen, Germany, 2003, Revised
Lectures, edited by O. Bousquet, U. von Luxburg, and
G. Rätsch (Springer Berlin Heidelberg, Berlin, Heidelberg,
2004), pp. 169–207.

[33] V. N. Vapnik, An overview of statistical learning theory,
IEEE Trans. Neural Networks 10, 988 (1999).

[34] T. M. Cover, Geometrical and Statistical Properties of
Systems of Linear Inequalities with Applications in Pattern
Recognition, IEEE Trans. Electron. Comput. EC-14, 326
(1965).

[35] P. Rotondo, M. C. Lagomarsino, and M. Gherardi, Counting
the learnable functions of geometrically structured data,
Phys. Rev. Research 2, 023169 (2020).
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