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Estimation of the properties of a physical system with minimal uncertainty is a central task in quantum
metrology. Optical phase estimation is at the center of many metrological tasks where the value of a
physical parameter is mapped to the phase of an electromagnetic field and single-shot measurements of this
phase are necessary. While there are measurements able to estimate the phase of light in a single shot with
small uncertainties, demonstrations of near-optimal single-shot measurements for an unknown phase of a
coherent state remain elusive. Here, we propose and demonstrate strategies for single-shot measurements
for ab initio phase estimation of coherent states that surpass the sensitivity limit of heterodyne measurement
and approach the Cramer-Rao lower bound for coherent states. These single-shot estimation strategies are
based on real-time optimization of coherent displacement operations, single photon counting with photon
number resolution, and fast feedback. We show that our demonstration of these optimized estimation
strategies surpasses the heterodyne limit for a wide range of optical powers without correcting for detection
efficiency with a moderate number of adaptive measurement steps. This is, to our knowledge, the most
sensitive single-shot measurement of an unknown phase encoded in optical coherent states.
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The realization of measurements for precise estimation
of physical quantities is essential in physics and engineer-
ing. The fundamental limits in precision for estimating a
physical parameter depend on the state used to probe the
system and the process in which the parameter is encoded
in the probe [1–3]. A central problem in quantum metro-
logy is the determination of the fundamental limits on the
achievable precision and their practical attainability [4–9].
Achieving such quantum measurement limits given a set of
physical states using physically realizable measurements is
the goal of practical estimation problems.
Optical phase estimation, where information is encoded

in the phase of an electromagnetic field, is essential in tasks
ranging from interferometry [5] to waveform [10] and force
sensing [11,12]. Enhanced phase estimation with and
without quantum states of light has been widely investi-
gated for sensing small deviations from a known phase
[13–18], and for phase estimation with repeated sampling
[19,20], and with feedback measurements [14,21–25]. For
these particular estimation tasks, near-optimal sensitivity
for phase estimation has been approached [5,26,27].
A different and challenging problem in parameter

estimation is the realization of single-shot measurements
of an unknown phase. In this estimation task, a measure-
ment is realized to estimate the phase carried by a single
optical mode in a single shot [28], either with coherent
fields [29,30] or quantum states of light [31]. Single-shot
measurements of a completely unknown phase of a
coherent state are essential for the cooling of mechanical
oscillators [32,33] and the preparation of spin squeezed

states based on measurement backaction [34], as well as for
high-sensitivity waveform [35] and force detection [36].
Adaptive Gaussian measurements based on homodyne

detection have been extensively investigated for single-shot
phase estimation with coherent states [28–30,37,38]. These
schemes can in principle outperform the heterodyne
measurement limit and asymptotically approach the
ultimate sensitivity for optical phase estimation given by
the Cramer-Rao lower bound (CRLB) [28–30]. Proof-of-
principle experiments have demonstrated the potential of
dyne adaptive measurements to surpass the heterodyne
measurement limit for single-shot phase estimation of
coherent states [39] and microwave-photon wave packets
[40] after correction for experimental inefficiencies.
Here, we demonstrate optimized adaptive non-Gaussian

measurements based on photon counting for single-
shot phase estimation of an unknown phase of optical
coherent states. These measurements use optimized coher-
ent displacement operations, photon number resolving
(PNR) detection, and conditional feedback to enable
estimation strategies with high sensitivities while being
robust to noise. These optimized estimation strategies allow
for surpassing the heterodyne measurement limit and
approaching the CRLB for coherent states with current
technologies. Our experimental demonstration uses PNR
detection with finite number resolution and real-time
optimization of the displacement operations conditioned
on the detection history as the measurement progresses.
Our demonstration surpasses the heterodyne measurement
limit without correcting for system inefficiencies and
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approaches the CRLB for coherent states when compared
to a system of the same efficiency. We believe this is the
most sensitive single-shot measurement of an unknown
optical phase of a coherent state to date.
Non-Gaussian phase estimation strategy.—Figure 1(a)

shows the concept of the non-Gaussian strategy for single-
shot phase estimation of a coherent state pulse in a single
mode jα0i ¼ jαeiϕ0i with a known mean photon number
hn̂i ¼ jαj2 but an unknown phase ϕ0 ∈ ½0; 2πÞ. In these
strategies, the displacement field is optimized in real time
based on photon counting measurements within the single
optical mode.
For a coherent state with unknown phase, the estimation

strategy implements L adaptive measurement steps over
this single mode. In the first adaptive step (k ¼ 1), the input
state jα0i, with prior probability distribution for the phase
PðϕÞ ¼ 1=2π, is displaced in phase space by D̂ðβÞ using
interference on a highly transmissive beam splitter to the
state D̂ðβÞjα0i ¼ jα0 þ βi. The photons in the displaced
state are then detected by a single photon detector described
by the operators Π̂n ¼ jnihnj for detection of n photons and
Π̂m ¼ Î −

P
m−1
n¼0 jnihnj for detection ofm or more photons.

Here m refers to the photon number resolution PNRðmÞ of
the detector [41,42]. Given the displacement field β and
detection result n, the strategy obtains the posterior
probability distribution Pðϕjn; βÞ for the phase through
Bayes’ rule: Pðϕjn; βÞ ∝ Lðnjϕ; βÞPðϕÞ. Here Lðnjϕ; βÞ is
the likelihood function for detecting n photons given the
displacement D̂ðβÞ:

Lðnjϕ; βÞ ¼ Tr½Π̂nD̂ðβÞjαihαjD̂†ðβÞ� ¼ jhnjαþ βij2: ð1Þ

The estimate of the phase ϕ0 for this adaptive measurement
step corresponds to the phase with the maximum posterior
probability maxϕfPðϕjn; βÞg. After this measurement step,
the posterior distribution Pðϕjn; βÞ becomes the prior
distribution PðϕÞ for the subsequent adaptive measurement
step, and this procedure is repeated for all L adaptive
periods.
Optimization of the strategy for phase estimation

requires the optimization of the displacement operation
D̂ðβoptÞ in phase argðβÞ and amplitude jβj in each adaptive
measurement step prior to photon detection. This optimi-
zation is achieved by maximizing a given objective
function that depends on the prior PðϕÞ and the likelihood
Lðnjϕ; βÞ distributions, averaged over all possible detec-
tion results in the measurement step [see Sec. I of the
Supplemental Material (SM) [43] ]. While several objective
functions can be used for this optimization [44], here we
focus on two objective functions: the expected sharpness of
the posterior distribution hSðβ; mÞi [14,21,45] and the
mutual information Iðβ; mÞ [38,46,47].
The expected sharpness of the posterior for a given

measurement step with PNR(m) is

hSðβ; mÞi ¼
Xm
n¼0

PðnÞ
����
Z

2π

0

eiϕPðϕjn; βÞdϕ
����; ð2Þ

where PðnÞ ¼ R
Lðnjϕ; βÞPðϕÞdϕ is the probability of

detecting n photons. Therefore, the optimal displacement
field βopt maximizes hSðβ; mÞi over all possible detection
results n in that step, resulting in maximal expected
sharpness.
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FIG. 1. Optimized non-Gaussian estimation strategy. (a) Concept of the adaptive displaced photon counting measurement for single-
shot phase estimation. (b) Simulated Holevo variance multiplied by the quantum Fisher information for coherent states ð4jαj2Þ. Shown
are strategies maximizing the sharpness hSðβ; mÞi (blue) and the mutual information Iðβ; mÞ (orange), and a nonoptimized strategy
(gray), all with L ¼ 30 adaptive steps, PNR(3), and ideal efficiency. Also shown is the CRLB for coherent states ð1=4jαj2Þ, the lower
bound of a heterodyne measurement ð1=2jαj2Þ, and the performance of the adaptive homodyne scheme termed “Mark II” from Ref. [30].
Bold lines are the average of five Monte-Carlo simulations of 103 randomly distributed initial phases, and the shaded regions represent
one standard deviation. The performance of both estimation strategies at jαj2 ¼ 103 for PNR(3) with L ¼ 200 and for PNR(12) with
L ¼ 30 are shown for reference.
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The expected mutual information for an adaptive
measurement step can be written as [38,46,47]

Iðβ; mÞ ¼
Xm
n¼0

Z
2π

0

Pðϕ; njβÞlog2
�
Pðϕ; njβÞ
PðnÞPðϕÞ

�
dϕ: ð3Þ

Here Pðϕ; njβÞ ¼ Pðϕjn; βÞPðnÞ ¼ Pðnjϕ; βÞPðϕÞ is the
joint probability distribution for n and ϕ given β, and
the optimal displacement βopt maximizes the mutual
information over all possible detection results n.
Recursive application of this procedure over the L

adaptive steps over the single-shot measurement yields a
complete history of photon detections fngL and optimal
displacements fβgL, which are used to calculate the final
phase estimate:

ϕ̂ ¼ arg½heiϕi� ¼ arg
�Z

2π

0

eiϕPðϕjfngL; fβgLÞdϕ
�
: ð4Þ

Here PðϕjfngL; fβgLÞ is the final reconstructed posterior
distribution given the complete measurement history. After
many (N) repetitions of the measurement with initially
random relative phases between the input state and the
initial displacement field, the variance of the distribution of
phase estimates from Eq. (4) can be described by the
Holevo variance for cyclic variables [29,48,49], which is
bounded by the CRLB:

Var½ϕ̂� ¼ 1

jheiϕ̂ij2
− 1 ≥

1

4jαj2 ; ð5Þ

where jheiϕ̂ij ¼ jPN
j¼1 e

iϕ̂j j=N is the sharpness of the
distribution of final estimates fϕ̂gN .
Figure 1(b) shows the Holevo variance multiplied by the

quantum Fisher information (QFI ¼ 4jαj2) for the opti-
mized non-Gaussian estimation strategies with L ¼ 30,
PNR(3), and ideal detection efficiency. These results are
obtained through Monte Carlo simulations using different
objective functions: sharpness (blue) and mutual informa-
tion (orange). Bold lines represent the average of five
Monte Carlo simulations each with N ¼ 103 randomly
sampled initial phases ϕ0, and the shaded regions represent
one standard deviation. Also shown is the CRLB (solid
black) for coherent states given by 1=4jαj2 and the lower
bound on the variance of an ideal heterodyne measurement
(dashed black) given by 1=2jαj2.
The gray line shows the expected variance of a strategy

without an optimized displacement field, which highlights
the advantages of optimized strategies. A nonoptimized
strategy uses a fixed local oscillator (LO) amplitude
jβj ¼ jαj, but with a LO phase that is adaptively set to
the current phase estimate ϕ̂. In such a strategy, the LO is
always attempting to displace the estimated state jαeiϕ̂i to
the vacuum state. Also shown for reference is the expected
performance of the adaptive homodyne strategy, termed

“Mark II,” proposed in [29,30](green line). We observe that
both optimized non-Gaussian estimation strategies enable
estimation with variances below the heterodyne limit from
jαj2 ≈ 2.5 to > 103 and reach a minimum of 1.13 times the
CRLB at jαj2 ≈ 50.
We note that the increase in variance of the estimation

strategies at large jαj2 can be mitigated by increasing the
number of adaptive steps L or the number resolution of the
detector, as shown in Fig. 1(b), which we have further
investigated [44]. We observe that at jαj2 ¼ 103 the
strategies can reach variances within 10% from the
CRLB. In particular, the strategy optimizing mutual infor-
mation with L ¼ 200 and PNR(3) achieves the smallest
variance of 1.003� 0.03 times the CRLB. [50] These
studies suggest that optimized photon counting measure-
ments can achieve variances within 1% from the CRLB at
finite mean photon numbers. Figure 1(b) also shows that for
both Gaussian and non-Gaussian measurement strategies,
as jαj2 decreases there is an increase in the phase variance.
This behavior is consistent with that of the canonical phase
measurement [30,44,49].
We find that during the initial steps of the measurement

(small k), the optimal LO values for each objective function
are in general very different due to the non-Gaussian photon
counting statistics. However, as themeasurement progresses,
for large k the posterior phase distributions for both strategies
approach a Gaussian distribution with small variance, which
has two notable consequences. First, in this limit the optimal
LO parameters for both strategies asymptote to the same
values, and these values make the classical Fisher informa-
tion for displaced photon counting equal to the QFI (see
Sec. II of the SM [43] for details). This result is consistent
with the theoretical work in [47] showing that Bayesian
experimental designs that adaptively optimize the mutual
information (or the variance of the posterior distribution and
by extension the sharpness) are asymptotically efficient, thus
reaching the CRLB [51]. Second, in this limit of phase
distributions with small variances, maximization of the
mutual information is analogous to maximization of the
Fisher information due to the connection between themutual
information and Fisher information via the relative entropy,
i.e., Kullback-Leibler divergence [52,53]. In contrast, maxi-
mization of the expected sharpness will yield minimal
variance [48]. This observation can be interpreted as each
strategy attempting to reach the CRLB but through different
approaches: either maximizing the Fisher information or
minimizing the phase variance. These asymptotic findings
are consistentwith our results for both strategies,which show
similar performances in the overall variance.
Experimental demonstration.—Figure 2 shows the

diagram for the experimental demonstration of the opti-
mized estimation strategies based on an interferometric
setup. A helium-neon laser and an acousto-optic modulator
pulsed at 1 kHz prepare coherent state pulses that enter the
interferometer in a 50=50 beam splitter. An attenuator and a
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phase modulator prepare the input coherent state with a
fixed mean photon number jαj2 and a phase ϕ0 to be
estimated. The optimized displacement βopt is prepared in
an LO field with an amplitude modulator and a second
phase modulator. We use a 99=1 beam splitter to implement
the displacement operation D̂ðβoptÞjαi. The photons in the
displaced state are detected by an avalanche photodiode
that acts as a PNR detector with finite photon number
resolution [41,42]. A field-programmable gate array
(FPGA) collects the detection events and implements the
phase estimation strategies described above. This FPGA
realizes in real time the Bayesian estimation procedure
during each adaptive measurement, as described in Sec. I of
the SM [43], and optimizes the displacement D̂ðβoptÞ
conditioned on photon detections. The optimization
protocol in the FPGA uses a Gaussian approximation for
steps k ≥ 9 in which the phase distributions PðϕÞ are
approximated as Gaussian distributions (see Sec. II in
the SM [43]). This approximation allows us to demonstrate
strategies with large numbers of adaptive steps, L ¼ 30. At
the end of an estimation measurement, the FPGA transfers
the history of detections fngL, the phase estimates fϕ̂gL,
and the optimized displacements fβoptgL to a computer for
processing and final estimation based on Eq. (4). We note
that while the optimization protocol uses a Gaussian
approximation, the recursive Bayesian procedure uses
the complete phase distribution PðϕÞ.
For experimental convenience, instead of randomly

choosing the initial phase ϕ0 and a fixed initial displace-
ment phase θð0Þβ ¼ argðβÞ ¼ 0, we fix ϕ0 ¼ π and start at a
random phase θð0Þβ . These two situations are equivalent,
since the initial relative phase θð0Þβ − ϕ0 is random in
both cases (see Sec. III of the SM [43]). Our experimental
implementation has a ≈66% duty cycle, uses a laser at
780 nm to stabilize the interferometric setup [41,42,54,55],
and achieves an overall system efficiency η ¼ 0.70
(avalanche photodiode efficiency ηAPD ≈ 0.84), interference

visibility ξ ¼ 0.997, and dark count rate ν ¼ 140=s. We
demonstrate estimation strategies for mean photon numbers
from jαj2 ¼ 1 to jαj2 ¼ 103, with PNR(3) and L ¼ 30
adaptive measurement steps that are each 20 μs long.
Results.—Figure 3 shows, as a function of jαj2, the

Holevo variance of the experimental results for single-shot
phase estimation of coherent states multiplied by the QFI
(4jαj2). Data points are the results for strategies maximizing
the average sharpness hSðβ; mÞi (blue) and the mutual
information Iðβ; mÞ (MI, orange). The points and error bars
represent the average variance and one standard deviation
over five different runs of the experiment, respectively, each
of which is the variance of N ¼ 104 independent experi-
ments with random initial relative phases θð0Þβ − ϕ0. The
CRLB (solid red line), the heterodyne limit (dashed red
line), and these bounds adjusted to the efficiency η ¼ 0.70
(solid and dashed black lines) are included for reference.
The purple (green) solid line is the expected Holevo
variance for a strategy maximizing the sharpness (mutual
information) obtained from the average of five Monte Carlo
simulations of the experiment, each with 103 samples.
These simulations take into account the experimental
imperfections and the effects of limited resolution, preci-
sion, and bandwidth of the FPGA on the implementation of

FIG. 2. Experimental setup for the adaptive displaced photon
counting measurement (see text for details). HeNe: helium-neon
laser, AOM: acousto-optic modulator, Att.: attenuator, PM: phase
modulator, AM: amplitude modulator, BS: beam splitter, APD:
avalanche photodiode; FPGA: field-programmable gate array.
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FIG. 3. Experimental results. Experimentally obtained Holevo
variance multiplied by the QFI for coherent states (4jαj2) for
estimation strategies maximizing the sharpness and the mutual
information as blue and orange points, respectively. Also shown
are the expected variances (solid lines) accounting for experi-
mental parameters. Included are the CRLB for coherent states
1=4jαj2 (solid red line) and the ideal heterodyne limit 1=2jαj2
(dashed red line), together with these bounds adjusted to the
efficiency of our implementation η ¼ 0.70 (solid and dashed
black lines). Note that both strategies outperform the ideal
heterodyne bound from jαj2 ≈ 20 to ≈600 and the adjusted
bound from jαj2 ≈ 6 to > 103. Furthermore, both estimation
strategies achieve a minimum of ≈1.68 times the CRLB (1.18
times adjusted) at jαj2 ≈ 70.
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the strategies. The increase of the error bars for large jαj2 in
the experimental results is due to the increased sensitivity
of the strategies to environmental noise at larger mean
photon numbers. As the variance is small in this regime,
technical noise causing small fluctuations or instabilities in
the relative phase of the input state and LO may become
non-negligible compared to the measured variance.
We observe that the optimized non-Gaussian estima-

tion strategies surpass the ideal heterodyne bound from
jαj2 ≈ 20 to 600, and the adjusted (η ¼ 0.70) heterodyne
bound from jαj2 ≈ 6 to > 103. Furthermore, in both
strategies the variance reaches a minimum at jαj2 ≈ 70
of less than 1.7 times the CRLB and less than 1.2 times
adjusted for η ¼ 0.70. These results show that adaptive
non-Gaussian measurements enable highly robust phase
estimation below the heterodyne limit without correction
for detection inefficiencies. We note that increasing the
number of adaptive steps and photon number resolution
[44] could allow for increasing the measurement sensi-
tivity at higher jαj2.
Conclusion.—We propose and demonstrate optimized

non-Gaussian estimation strategies for single-shot
measurements of an unknown phase of optical coherent
states with sensitivities surpassing the heterodyne limit and
approaching the CRLB. These strategies use optimized
displacement operations, single-photon counting with finite
photon number resolution, and a moderate number of
adaptive steps with fast feedback. Our demonstration of
the single-shot estimation strategies uses fast processing for
optimization of the displacement operations in real time
conditioned on the detection history as the measurement
progresses throughout the single optical mode. We show
that our experimental demonstration surpasses the ideal
heterodyne limit for a wide range of optical powers without
correcting for detection efficiency and achieves variances
of less than 1.2 times the equivalent CRLB adjusted to our
system efficiency. This is, to our knowledge, the most
sensitive single-shot measurement of an unknown phase
encoded in optical coherent states to date.
We expect that these optimized measurements for phase

estimation of coherent states can be used to enhance the
performance of schemes based on measurement backaction
for the cooling of mechanical oscillators [32,33], the
preparation of spin squeezed states [34], and applications
in waveform and force detection [36]. Moreover, optimized
non-Gaussian measurements can potentially be used for
surpassing the limits of Gaussian approaches for estimating
a time-varying phase [56–59] and maximizing information
transmission in optical communications [55,60], as well as
for phase estimation when quantum resources are
employed [31].
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