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Quantum algorithms offer a dramatic speedup for computational problems in material science and
chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within
the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of
gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in
circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary
swap-like (iSWAP-like) gate to attain an arbitrary swap angle, θ, and a controlled-phase gate that generates
an arbitrary conditional phase, ϕ. Using one of each of these gates, we can perform an arbitrary two-qubit
gate within the excitation-preserving subspace allowing for a complete implementation of the so-called
Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase
gate families as well as 525 other fSim gates spread evenly across the entire fSimðθ;ϕÞ parameter space,
achieving a purity-limited average two-qubit Pauli error of 3.8 × 10−3 per fSim gate.
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Introduction.—Quantum computing is a potentially
transformative technology, but challenges remain in
identifying a path toward solving practical problems with
a quantum advantage [1]. Continued progress toward
this goal may be made on many fronts, including qubit
coherence or scalability [2,3], measurement or gate
fidelities [4,5], and algorithmic improvements that reduce
the required circuit depth through compilation [6]. In
superconducting qubits, single-qubit gates usually exhibit
a factor of 2 or more lower error than two-qubit gates.
Consequently, a typical strategy has been to demonstrate a
minimally universal gate set consisting of arbitrary single-
qubit rotations and a single two-qubit gate [7]. This is an
efficient approach for some algorithms, including surface
code error correction, which compile optimally with such a

gate set [8]. However, many noisy intermediate-scale quan-
tum (NISQ) [9] algorithms require a more diverse set of
two-qubit gates. An implementation of these gates could
take the place of six to eight single-qubit gates and three CZϕ

gates per arbitrary two-qubit gate required with an optimal
decomposition into a minimally universal gate set [10].
In the NISQ era, we need the largest two-qubit gate set

that may be implemented with high fidelity. A general two-
qubit unitary gate allows independent control over the
strength of σXσX, σYσY , and σZσZ coupling between qubits
requiring both DC and microwave control of gmon qubits
[11]. However, models of interacting particles typically
conserve the number of excitations corresponding to a
simpler model where the σXσX and σYσY couplings have
equal coefficients. This reduces the number of control
parameters from three to two and eliminates the need for
microwave control during an algorithm. This set of
excitation-conserving gates has been appropriately termed
the Fermionic simulation (fSim) gate set since it maps
electron conservation in a chemistry problem to photon
conservation in qubits [12]. An fSim gate can be defined
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with two control angles: θ, the j01i ↔ j10i swap
angle, and, ϕ, the phase of the j11i state with a matrix
representation in the j00i; j01i; j10i; j11i basis given by

fSimðθ;ϕÞ ¼

0
BBBB@

1 0 0 0

0 cos θ −i sin θ 0

0 −i sin θ cos θ 0

0 0 0 e−iϕ

1
CCCCA

ð1Þ

We use this as both a convenient definition and a useful
model for describing general two-qubit gates resulting from
arbitrary flux control of gmon qubits. Notably, promising
low-depth algorithms using this gate set have been
proposed, including the quantum approximate optimization
algorithm [13] and an algorithm for linear-depth circuits
simulating the electronic structure of molecules [12].
Additionally, algorithms performed with just z rotations
and fSim gates enable error mitigation techniques, includ-
ing postselection and zero noise extrapolation [14], further
improving this gate set’s prospects on NISQ processors.
Here, we first demonstrate the strong flux tunable

coupling between gmon qubits that we use to perform fast
two-qubit gates. Then, to describe our calibration and
control strategy, we use shallow circuits to illuminate
the natural correspondence of the coupled transmon
Hamiltonian and the fSim gate set. We use cross-entropy
benchmarking (XEB) [15] to characterize two linearly
independent and continuous families of entangling gates:
the imaginary swap-like (iSWAP-like) family correspond-
ing to fSimðθ;ϕ ∝ θ2Þ, and the controlled-phase
(CPHASE) family corresponding to fSimðθ ≈ 0°;ϕÞ. We
then combine these two continuous gate sets to calibrate
and benchmark 525 fSim gates spread evenly across the
entire (θ, ϕ) parameter space.
Strong coupling with gmon qubits.—The quantum

processors used in this work followed the Sycamore design
used in reference [16], with each processor consisting of a
chain of four gmon transmon qubits coupled by three
transmon qubit couplers. Both the qubit frequencies and
their coupling can be independently controlled, providing
several advantages over fixed coupling designs [11,17,18].
First, since we can turn off the coupling at any detuning,
both qubits may idle and perform single-qubit gates while
operating closer to their flux insensitive point. This
improves dephasing and decreases our sensitivity to flux
settling tails. Second, since entangling gates are performed
by bringing the qubit states near resonance, idling the
qubits closer together means that gates require much
smaller dynamic detunings, further reducing the amplitude
of flux settling tails [19,20]. Third, since the minimum
coupling strength is not dependent on the maximum qubit-
qubit detuning, we are able to increase the overall maxi-
mum coupling strength, enabling faster gates with reduced
decoherence error.

In Fig. 1, we characterize the qubit-qubit coupling
strength as a function of the coupler flux bias. Using the
pulse sequence in Fig. 1(a), we initialize one qubit, apply an
fSim gate, and measure the population transferred to the
other qubit. Each fSim gate is defined by the amplitude and
duration of three, nominally rectangular, flux bias pulses.
Two pulses control the qubit frequencies and set their
relative detuning, Δ, while the third pulse controls the
coupling strength between the qubits, g. In Fig. 1(b), we
repeat this pulse sequence using the qubit flux biases to
place them on resonance (Δ ¼ 0 MHz) while varying the
coupler bias amplitude and the shared duration of all three
pulses. By taking the Fourier transform of the oscillating
population data in Fig. 1(b), we extract the swap rate as a
function of coupler bias, which is equivalent to twice the
qubit-qubit coupling, g, plotted in Fig. 1(c). We measure
g=2π ¼ 6 MHz when the coupler is at its maximum
frequency (zero bias) and a coupling exceeding −50 MHz
as the coupler frequency is reduced. The net coupling
changes sign between these two regions, ensuring we can
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FIG. 1. Demonstration of the tunable coupling between gmon
qubits. (a) Pulse sequence used to measure swapping as a
function of coupler bias. We initialize one qubit, perform an
fSim gate defined by a set of three flux pulses that control the
qubit frequencies and the coupling between the qubits, and
measure the population of the other qubit. (b) We vary the fSim
gate as a function of the length and amplitude of the coupler pulse
to measure the swap rate as a function of the bias amplitude.
(c) By taking the Fourier transform of the oscillations in (b), we
extract the coupling strength, jgj, as a function of coupler bias.
The coupling changes sign at the two “OFF” biases, ensuring we
can turn the coupling off.
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turn the coupling off. During general operation, we idle and
perform single-qubit gates with the coupler at the “OFF”
bias and make excursions to stronger couplings (“ON”
region) to perform fSim gates. In this work, we use
gmax=2π ≈ −45 MHz, which is three times stronger than
is typical for fixed coupling devices.
Coupled transmon physics and the fSim gate set.—In the

absence of a resonant microwave drive, coupled transmon
qubits naturally evolve within the excitation-preserving
subspace. The specific time evolution is determined by
three parameters: the qubit nonlinearity, η; the qubit-qubit
frequency detuning, Δ; and the coupling between qubits,
g. While η is fixed at 240 MHz by qubit capacitance, the
gmon architecture allows for time-dependent control of
both Δ and jgj using DC to ∼200 MHz bandwidth flux
waveforms. The average of the two qubit frequencies
during the interaction is a free parameter that may be used
to avoid coupled two level system defects present in the
frequency spectrum of either qubit [21–23]. For simplicity,
we limit our fSim control pulses to synchronous, nominally
rectangular waveforms (see Supplemental Material [24],
Sec. IV) defined by four parameters: a shared length,
typically 13 to 15 ns, and three control amplitudes that set g
and Δ. While further pulse shaping may improve gate

performance in the future, these basic waveforms were
sufficient to approach the decoherence limit of our qubits,
which have a T1 of 25.3� 7.3 μs (Supplemental Material
[24], Sec. III B).
The full fSim control model describes any low-leakage

two-qubit unitary evolution with five parameters: θ and ϕ,
discussed previously, in addition to three parameters
describing single-qubit phases as detailed in Sec. I of
the Supplemental Material [24]. Here, we focus on the
parameters that describe the two-qubit interaction and use
the three experiments, described in Fig. 2, to measure
leakage to the j02i state and map out the ϕ and θ control
landscape (the complete unitary tomography procedure is
outlined in Sec. III C of the Supplemental Material [24]).
Each experiment follows the same pattern: initialize a
relevant state, apply fSim control pulses, and then perform
either population or tomographic measurements to extract
the desired qubit’s population or phase. Within the fSim
model, leakage is the dominant error. In Fig. 2(a), we map
out leakage by initializing j11i and measuring the j0i
population of the lower frequency qubit as a proxy for
leakage in the higher frequency qubit. In Fig. 2(b), we
explore the ϕ parameter space by performing a Ramsey
experiment where we take the difference in the

(b)(a) (c)

FIG. 2. Exploring the parameter space of two-qubit gates. Each pixel represents one experiment. We use a set of 15 ns rectangular
current bias waveforms to perform some fSim unitary by setting the qubit-qubit detuning, Δ, and the coupling strength, g. (a) To identify
the low-leakage gates described by the fSim model, we measure leakage by initializing the j11i state and measuring the j02i state. When
the detuning is near the qubit nonlinearity, we observe the expected Rabi oscillations. (b) We measure the conditional phase, ϕ, by
performing a Ramsey experiment where we initialize one qubit with an X=2 gate and perform tomography to measure the difference in
accumulated phase (ϕ) with and without initializing the other qubit to the j1i state. By choosing combinations of Δ and g as indicated by
the CPHASE dash-dotted line [chosen as the low-leakage coupling strength from (a)], we are able to achieve any ϕ: [−180°, 180°].
(c) We measure the swap angle, θ, by initializing the j01i state and measuring the j10i state. By placing the qubits on resonance and
varying the coupling strength along the iSWAP-like dashed line, we are able to achieve any θ: [0°, 90°].
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accumulated phase with and without the second qubit
initialized to the j1i state. Finally, in Fig. 2(c), we explore
the θ parameter space by initializing one qubit to the j1i
state and measuring the j1i population of the other qubit
after the fSim gate. The Rabi oscillation physics explored
with these measurements is reproduced with fairly rudi-
mentary numerics in Sec. II of the Supplemental Material
[24], but these experiments serve to demonstrate our fSim
control strategy.
Benchmarking iSWAP-like and CPHASE gates.—The

data presented in Fig. 2 provide a map for implementing an
arbitrary fSim—each pixel defines a set of three control
amplitudes, and any control amplitudes yielding low
leakage should result in a high-fidelity gate described by
the fSim control model [Eq. (1)]. While it may be possible
to perform an arbitrary fSim gate with a single set of flux
pulses using either very strong coupling or more complex
control waveforms, we have chosen to implement an
arbitrary fSim gate as a composition of two continuous
gate families using simple rectangular control pulses to
minimize the gate length. The first gate family completes a
diabatic j11i⇄j02i swap to perform a gate with an arbitrary
conditional phase, ϕ, using control amplitudes denoted by
the dot-dashed line labeled “CPHASE” in Figs. 2(a) and
2(b). The dominant control angle in the CPHASE gate
family is the conditional phase, but we do accumulate a
small swap angle θ due to the strong coupling necessary to
perform a fast CPHASE gate (θ ≤ 5° for a 13 ns CPHASE
gate—this may be reduced by increasing the gate duration).
The second gate family places the qubits on resonance
(Δ ¼ 0 MHz) and varies g to reach the desired swap angle,
θ, using control amplitudes along the dashed line labeled
“iSWAP-like” in Fig. 2(c). We have deemed this gate
family “iSWAP-like” since the swap angle varies from
θ∶ ½0°; 90°� and because this gate accumulates a conditional
phase ϕ ∝ θ2 due to the dispersive interaction with the j02i
and j20i states. Both of these gates are a subset of the fSim
group individually, and, compiled together, they can reach
the full fSim parameter space.
In Fig. 3, we characterize both the iSWAP-like and

CPHASE gate families using XEB [15]. On the left axes,
we plot the optimized values of θ and ϕ for a range of
CPHASE and iSWAP-like gates, and on the right y axes,
we plot the Pauli error per two-qubit gate (Supplemental
Material [24], Sec. III B), achieving average errors
of 1.9 × 10−3 and 1.2 × 10−3 for each gate family,
respectively.
Benchmarking fSim gates.—In Fig. 4(a), we present the

Pauli error of 525 distinct fSimðθ;ϕÞ gates where the values
of θ and ϕ have been constrained to be exactly the values
indicated by the xy coordinates at the center of each pixel
(where ex situ optimization has been used to optimize only
the single-qubit phases). Each 28 ns long fSim gate in
Fig. 4 is a composition of a 15 ns CPHASE gate followed
by a 13 ns iSWAP-like gate. While the fSim fidelity is

largely independent of the values of θ and ϕ, there are a few
features of note. As discussed in Sec. IV C of the
Supplemental Material [24], we most directly calibrated
line cuts at θ ¼ 0°; 90° and ϕ ¼ 180°. The regions of higher
error where ϕ is near 0° (360°) involve the most extra-
polation from the directly calibrated control amplitudes.
There is also a faintly visible indication of a band of higher
error near ϕ ≈ 240°, which we believe is due to a weakly
interacting two level system defect in the spectrum of one
of the qubits. In the future, we hope to avoid such defects

(a)

(b)

FIG. 3. Characterizing the iSWAP-like and CPHASE gate
families with cross-entropy benchmarking. We plot the optimized
fSim control angles, θ and ϕ, on the left y-axes and the Pauli
gate error per two-qubit gate on the right y-axes, conservatively
assuming 7.5 × 10−4 single-qubit Pauli gate errors. (a) Charac-
terization of the CPHASE gate family corresponding to
fSimðθ ≈ 0°;ϕÞ. Each gate is 15 ns long, consisting of control
pulses that vary the qubit detuning, Δ, around the qubit
nonlinearity, η, with a coupler bias amplitude chosen to complete
one full swap: j11i → j02i → j11i. We measure an average
two-qubit Pauli error of 1.9 × 10−3 for the CPHASE family.
(b) Characterization of the iSWAP-like gate family corresponding
to fSimðθ;ϕ ∝ θ2Þ. Each gate is 13 ns long, consisting of control
pulses that place the qubits on resonance and vary the coupling
strength, jgj, to achieve an arbitrary swap angle θ between the
j01i and j10i states. We measure an average two-qubit Pauli error
of 1.2 × 10−3 for the iSWAP-like family.
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by shifting the frequencies of both qubits while maintaining
their relative detuning. In Fig. 4(b), we histogram these
results in addition to the purity [31] loss per fSim and
confirm a purity-limited average Pauli error of 3.83 × 10−3

per fSim gate.
Conclusions.—We have implemented continuous

iSWAP-like and CPHASE gate families with average
Pauli error rates of 1.2 × 10−3 and 1.9 × 10−3, respectively.
These fast (13–15 ns) gates take advantage of the strong,
tunable, qubit-qubit coupling offered by our gmon trans-
mon qubit architecture, achieving error rates more than a
factor of 2 lower than the best previously reported two-
qubit gates for superconducting qubits [32]. Additionally,
we have combined these two gate sets to demonstrate a
complete implementation of the two-qubit fSim gate set

with an average Pauli error of 3.83 × 10−3 per gate. This
direct implementation of the fSim gate offers roughly an
additional factor of three in compilation efficiency for
NISQ algorithms over a minimally universal gate set.
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