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Solids built out of active components can exhibit nonreciprocal elastic coefficients that give rise to non-
Hermitian wave phenomena. Here, we investigate non-Hermitian effects present at the boundary of two-
dimensional active elastic media obeying two general assumptions: their microscopic forces conserve
linear momentum and arise only from static deformations. Using continuum equations, we demonstrate the
existence of the non-Hermitian skin effect in which the boundary hosts an extensive number of localized
modes. Furthermore, lattice models reveal non-Hermitian topological transitions mediated by exceptional
rings driven by the activity level of individual bonds.
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The microscopic injection of energy into solid media via
active, living, or robotic components fundamentally alters
their mechanical waves [1–7]. As with optics [8,9], topo-
electric circuits [10–13], and open quantum systems
[14,15], the interplay between activity (gain) and dissipa-
tion (loss) can often be captured by non-Hermitian oper-
ators [16–18]. In all these contexts, a central question is the
role of non-Hermiticity at the boundary of the system. Like
their Hermitian counterparts, non-Hermitian systems have
been shown to exhibit topological invariants that ensure
localized boundary modes [19–32]. However, in some
cases, the familiar bulk-boundary correspondence breaks
down for non-Hermtian systems. Such systems exhibit the
non-Hermitian skin effect, in which an extensive number of
modes are localized to the system’s boundary [33–35].
Here we examine the non-Hermitian wave phenomena

that arise from the elastic properties of a class of active
solids. In the continuum, non-Hermiticity enters the linear
elasticity of a solid through odd elastic moduli, which are
active moduli that violate Maxwell-Betti reciprocity [7].
We show that such odd elastic moduli when combined with
anisotropy can give rise to the non-Hermitian skin effect.
This effect implies a dramatic localization of vibrational
modes to the system’s boundary. Furthermore, we take a
microscopic view of elasticity by considering 2D lattices
composed of active bonds. These bonds, while active,
retain two crucial features of Hookean springs: they
conserve linear momentum and depend only on changes
in relative distance. We uncover a non-Hermitian topo-
logical transition driven by the level of activity. This
transition differs qualitatively from its Hermitian counter-
part in that it is mediated by exceptional rings. Such rings
arise due to geometric changes in the particle trajectories
that enable the system to draw energy from nonpotential

forces. We interpret the resulting energy cycles in terms of a
generalized PT symmetry.
Non-Hermitian elasticity.—We choose as our starting

point elasticity theory, the continuum description of solids
that captures their ability to resist shape change at large
length scales [36]. Unlike conventional treatments of
passive elasticity, we seek to capture at a coarse-grained
level the effects induced by nonconservative internal forces
FiðxÞ satisfying three assumptions [7]. First, the forces
conserve linear momentum, and therefore can be written as
the divergence of a stress ∂jσijðxÞ. Second, the forces only
depend on the static change in shape, which is captured by
gradients of the displacement field uij ¼ ∂iujðxÞ. Finally,
we employ the phenomenological assumption that the
stresses can be approximated as linearly proportional to
the displacement gradients: σij ¼ Cijmnumn. The object
Cijmn is the elastic tensor, and it encodes the material’s
response to static deformation.
Following the approach of Ref. [7], it is useful to express

the elastic tensor as the sum of two pieces:

Cijmn ¼ Ce
ijmn þ Co

ijmn; ð1Þ

where Ce
ijmn ¼ Ce

mnij is even, or symmetric, under
exchange of pairs of the lower indices while Co

ijmn ¼
−Co

mnij is odd, or antisymmetric [7]. To understand the
decomposition, consider the elastic work done (per unit
volume) by a patch of material brought through a closed
cycle of strain: w ¼ −

H
σijduij ¼ Co

ijmn

H
uijdumn. If the

system is passive, w ¼ 0 for any cycle that begins and ends
in the same state, and hence Co

ijmn ¼ 0. However, for an
active solid, this requirement does not hold and, conse-
quently, Co

ijmn may be nonzero. We use the term “odd
elastic media” to refer to this class of active systems [7].
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Suitable experimental platforms include robotic meta-
materials [2,5], solids with integrated piezoelectric com-
ponents [37,38], and chiral optical matter [39–41].
Here, we focus on anisotropic odd-elastic media and

illustrate how they generically exhibit the non-Hermitian
skin effect. For concreteness, consider a minimal example
of anisotropic odd elasticity represented by the following
pictorial stress-strain relationship (see the Supplemental
Material for standard tensor notation [41]):

ð2Þ

The modulus Ge (contained in Ce
ijmn) couples dilation ( )

to shear stress ( ) and shear strain ( ) to pressure ( )
symmetrically, see Fig. 1(a). By contrast, the modulus Go

(contained in Co
ijmn) provides an antisymmetric coupling

[Fig. 1(b)]. Equation (2) also includes the standard shear
modulus μ to ensure mechanical stability. In the presence of
these moduli, the expression for elastic forces may be
written as FðxÞ ¼ D̂uðxÞ, where D̂ takes the following
form:

D̂¼
�

μ∇2þ2Ge∂x∂y Ge∇2þGo½∂2
x−∂2

y�
Ge∇2−Go½∂2

x−∂2
y� μ∇2þ2Ge∂x∂y

�
; ð3Þ

where ∇2 ¼ ∂2
x þ ∂2

y. In Eq. (3) we observe that the
operator D̂ becomes non-Hermitian when Go is nonzero,
i.e., when the anisotropic moduli display an odd component
arising from nonconservative elastic forces. We find that
the non-Hermiticity has a dramatic effect on the nature of
the bulk modes. In Fig. 1(c), we show the spectrum of D̂ as
a function of wave number qy for fixed qx when both Ge

and Go are present. We find two striking features. First, the
open boundary spectrum (square markers) differs dramati-
cally from the spectrum with periodic boundaries (black
lines). Second, when we examine a typical eigenmode
[Fig. 1(d), right] we find that the mode is exponentially
localized to the open edge. In Fig. 1(c), we color each mode
by the degree of localization to the top (blue) and bottom
(red) boundaries. In contrast to typical topological waves or
Rayleigh waves in Hermitian systems [36], an extensive
number of modes are localized to the boundary. This
extensive localization of bulk modes is an elastic mani-
festation of the non-Hermitian skin effect.

FIG. 1. Elastic non-Hermitian skin effect. (a) An anisotropic, passive elastic modulus Ge that couples dilation and shear. (b) The
corresponding anisotropic, odd elastic counterpart Go. (c) The elastic spectrum for Go=Ge ¼ 1.7. The black arrows are analytical
calculations of the periodic boundary spectrum, see [41]. The colored squares denote numerical calculations of the spectrum with open
boundary conditions. Blue (red) indicates localization to the top (bottom) boundary. (d) Numerically computed eigenmodes with only
Ge present (left), only Go present (middle), and both Go and Go (right). Hue indicates the angle and opacity indicates the magnitude of
the displacement field uðxÞ. The horizontal boundaries (red) are open and the vertical boundaries (black) are periodic. The boundary
termination forms an angle π=4with respect to the axis of anisotropy. (e) Since the spectrum of a Hermitian system lies on the real line, a
generic eigenvalue is at least doubly degenerate. (f) For a non-Hermitian system, the spectrum can trace out nondegenerate arcs (black
solid). In this case, the spectrum deforms (blue squares) to form degeneracies when a boundary is introduced.
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Yet, when either Go ¼ 0 or Ge ¼ 0, the skin effect
disappears [Fig. 1(d), left and center, respectively]. To gain
insight into its origins, we consider the notion of a
generalized Brillouin zone [33–35]. Let qk (q⊥) be the
wave number parallel (perpendicular) to the boundary. For
a finite system, at least two Bloch modes must have the
same eigenvalue λ and wave number qk in order to interfere
to satisfy a given boundary condition, e.g., u ¼ 0. If D̂ is
Hermitian or anti-Hermitian, this condition is generically
satisfied since the spectrum is confined to lie entirely along
the real or imaginary line [Fig. 1(e)]. However, when both
Ce
ijmn and Co

ijmn are nonzero, the spectrum can inhabit the
full complex plane. Consequently, the spectrum, plotted as
a function of q⊥, need not retrace itself [Fig. 1(f)]. In this
case, there exist segments in which no two extended Bloch
modes have the same λ and qk. Nonetheless, one can
consider Bloch modes with complex wave numbers
q̃⊥ ¼ q⊥ þ iκðq⊥Þ. By analytically continuing D̂ into
the complex Brillouin zone, the eigenvalues flow together
to enable interference at the boundary.
Finally, we note that the use of the two specific moduli

Ge and Go in Eq. (2) is purely illustrative. More generally,
two necessary conditions must be met in order for the non-
Hermitian skin effect to emerge within the continuum
description of an elastic medium. First, both Ce

ijmn and
Co
ijmn must be nonzero for the spectrum to occupy the

complex plane. Second, the system must be anisotropic in
order for the spectrum not have a reflection symmetry over
the system’s boundary (q⊥ ↦ −q⊥), see the Supplemental
Material [41]. For the example in Eq. (2), both Ce

ijmn and
Co
ijmn are independently anisotropic. In the Supplemental

Material we examine a case in which only Ce
ijmn is

anisotropic. Finally, we note that D̂ has inversion sym-
metry, which implies that the skin modes occur in pairs
localized to each boundary [12]. This is a contrast to
systems in which an external medium enables an effective
violation of Newton’s third law [4–6]. The continuum limit
of these systems (whose interactions do not conserve linear
momentum) yields D̂ ∝ q, rather than the D̂ ∝ q2 depend-
ence characteristic of elasticity [41].
Microscopic model.—A ubiquitous minimal model for

elastic solids is a collection of masses connected by
Hookean springs [53–66]. The Hookean spring captures
two generic features of elasticity. First, the interaction
conserves linear momentum, since the forces on the two
participating particles are equal and opposite. Second, the
force only depends on the change in bond length. Hence,
the emerging mechanical response will be sensitive only to
intrinsic changes in geometry. Yet, the Hookean spring has
an additional feature built in: its force law follows from the
gradient of a potential. Here, we retain the assumptions of
length dependence and linear momentum conservation, and
we study the most general 2D linear pairwise interaction
when only energy conservation is lifted [7]:

FðrÞ ¼ −ðkr̂þ kaϕ̂Þδr; ð4Þ

where r̂ (ϕ̂) is a unit vector pointing along (transverse to)
the bond vector, δr is the change in length of the bond, and
k and ka are spring constants [see Fig. 2(a)].
When the bond is taken on a closed cycle, the work done

W ¼ H
F · dr is equal to ka times the area enclosed by the

path. Hence, when ka ≠ 0, Eq. (4) cannot be derived from a
potential. In principle, Eq. (4) can be paired with any form
of dynamics that governs the temporal evolution of the
system. Here, for concreteness, we will interpret our results
in the context of an overdamped equation of motion:

FIG. 2. Non-Hermitian topological transition and exceptional
rings. (a) The generalized Hookean spring with the force F
oriented at an angle θ with respect to the bond vector. (b) Sim-
ulations with θ ¼ 0 (left) and θ ¼ π=2 (right) in which a particle
at the edge is vibrated. Two lengths, the penetration depth ξ and
the propagation distance l, are plotted as a function of θ. (c) The
spectrum plotted over the Brillouin zone for θ ¼ 0; π=12; π=6,
π=2. Regions of positive (green) and negative (purple) Berry
curvature are highlighted. The orange lines denote exceptional
rings. (d) At point qM, pairs of masses move in tandem. (e) The
eigenmodes (arrows) of the effective single particle system at
θ ¼ 0; π=6, π=2.
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Γ∂tu ¼ F, where u is the displacement of the particle and
Γ is a drag coefficient. By adjusting the angle θ ¼
arctanðka=kÞ between r̂ and F, we can interpolate between
longitudinal and transverse interactions [67–76]. In the
Supplemental Material [41], we show how the equations
governing the overdamped dynamics of an active solid with
nonconservative bonds described by Eq. (4) are the same as
those governing the inertial dynamics of a gyroscopic
metamaterial [77–81] with conservative springlike inter-
actions and weak dissipation. However, we note that
deformation cycles performed with the gyroscopic media
do not extract energy since the left-hand side of Eq. (4)
represents torques, not forces. Similarly, in the continuum
treatment of gyroscopes, the left-hand side of Eq. (2)
represents angular momentum currents, not stresses.
Generalized PT symmetry and energy cycles.—For a

generic network of masses connected by the bonds in
Eq. (4), the linear relationship between forces FðxÞ and
displacements uðxÞ can be captured by a dynamical matrix
formalism FðxÞ ¼ P

x0 Dðx;x0Þuðx0Þ, where x and x0 are
lattice sites and Dðx;x0Þ is the dynamical matrix. The mere
fact that the forces and displacements are real implies that
½K; Dðx;x0Þ� ¼ 0, where K is complex conjugation. Since
K is an antiunitary operator with K2 ¼ 1, we say
that the dynamical matrix has a generalized PT symmetry
[17,82–84], see [41].
The PT symmetry has the following physical conse-

quence: if a given eigenvalue λ of D is real, then the
corresponding eigenvector uλðxÞmay be chosen real. Since
uλðxÞ is real, the corresponding trajectory of each particle
traces out straight lines in time [Fig. 2(e), left]. Moreover,
nonreal eigenvalues come in complex conjugate pairs
λ� ¼ λR � iλI with eigenvectors of the form:

uλ�ðxÞ ¼ vðxÞ � iwðxÞ; ð5Þ

where vðxÞ and wðxÞ are real vectors. Physically, a
complex eigenvalue indicates energetic gain or loss. In
this case, the eigenmode cycles between two states vðxÞ
and wðxÞ. Since the bonds are nonpotential, the cycles
result in the injection (or removal) of energy [Fig. 2(e),
right]. If all the eigenvalues of D are real, we say that D is
PT unbroken, and PT broken otherwise [85].
Non-Hermitian topological transition.—Given a micro-

scopic model, we can study not only the acoustic bands
(accessible within the continuum theory) but also features
of the optical bands. Figure 2(b) shows the response of a
honeycomb lattice to vibrations applied at the boundary in
two extreme cases: the passive Hookean limit θ ¼ 0, and
the active transverse limit θ ¼ π=2. In the transverse limit,
we see the emergence of a sustained, unidirectional edge
wave characteristic of a Chern insulator [77,78]. Due to the
translation symmetry, we may express the dynamical
matrix in terms of wave number q [41]:

DθðqÞ ¼ cosðθÞD0ðqÞ þ sinðθÞDπ=2ðqÞ: ð6Þ

For Hermitian systems, nontrivial topology requires break-
ing time-reversal symmetry (TRS): Dθð−qÞ ¼ D�

θðqÞ [86].
However, here DθðqÞ naïvely obeys TRS for all θ since the
forces and displacements are real quantities. Nonetheless,
band topology is still possible due to the violation of
Hermiticity. At θ ¼ π=2, the dynamical matrix Dπ=2ðqÞ
(restricted to its optical bands, see [41]) is anti-Hermitian.
Hence the relevant Hermitian Hamiltonian HðqÞ ¼
iDπ=2ðqÞ violates TRS as required. When θ ¼ π=2, the
lattice boundary hosts a chiral edge state due to the
nonvanishing Chern numbers of the optical bands.
The transition between Hermitian and anti-Hermitian

limits is accompanied by two length scales ξ and l
[Fig. 2(b), right]. The first length scale ξ is the penetration
depth into the medium, which is set by the structure of the
eigenvectors ofDθ. Like the Haldane model [41,87,88], ξ is
roughly constant as the gap opens and closes. Yet, the edge
modes do not become visible until large values of θ are
probed. This effect can be traced to the second length scale
l, which is the distance the wave propagates around the
edge. This length scale is set by the eigenvalues of the
dynamical matrix. For a given mode, l ≈ τω=q, where
τ ¼ −1=ReðλÞ is the decay rate and ω ¼ −ImðλÞ is the
oscillation frequency. Hence, the localized edge mode
becomes apparent close to the anti-Hermitian limit, i.e.,
θ near π=2.
Mechanical exceptional points.—Insight into the tran-

sition is gained by examining the point qM in the Brillouin
zone. At this point, the 4 × 4 dynamical matrix DðqMÞ can
be reduced to an effective dynamical matrix that governs
the motion of a single particle in a trap [Figs. 2(d) and 2(e)]:

Deff ¼ −
�
cos θ −3 sin θ
sin θ 3 cos θ

�
; ð7Þ

with eigenvalues λ� ¼ −2 cos θ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð2θÞ − 1

p
, see

[41]. For θ < π=6, two real modes exist that trace out
straight lines [Fig. 2(e), left]; for θ > π=6, the eigenmodes
trace out cycles (right). At the transition θ ¼ π=6, Deff
permits only a single eigenvalue λ− ¼ λþ. However, the
anisotropy of the trap and the chirality of the bonds imply
that no two linear eigenmodes can have the same eigen-
value unless they are parallel. Hence, the two independent
modes coalesce, indicating that the dynamical matrix is
defective (i.e., nondiagonalizable). Such occurrences,
known as “exceptional points,” are generic features of
transitions between PT-broken and PT-unbroken phases
[15,30,82,89–92]. Here, the exceptional points take on a
clear physical meaning: they mark the crossovers between
eigenmodes with linear motion, and eigenmodes with
circular motion necessary to sustain active waves.
For the honeycomb lattice, the exceptional points do not

merely occur at point qM. Rather, they occur along 1D rings
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depicted in orange in Fig. 2(c). In the Supplemental
Material [41], we show that the inversion symmetry of
the honeycomb lattice gives rise to a second manifestation
of PT symmetry, given by PT ¼ KU, where U ¼ 1 ⊗ σx
acts on DθðqÞ. This PT symmetry applies locally at each
point in the Brillouin zone. Hence contiguous regions of the
Brillouin zone form PT-broken and PT-unbroken phases
bounded by rings of exceptional points [3,31,93,94].
Non-Hermitian edge modes.—Finally, we note that the

skin effect, previously discussed in the long-wavelength
limit within continuum theory, has a counterpart in the
optical bands of the lattice models. In Fig. 3, we place the
active bonds on an undeformed kagome lattice illustrated in
Fig. 3(a) and compute the spectrum with periodic
[Fig. 3(b)] and open [Fig. 3(c)] boundaries. We color the
modes by their participation ratio

P
x juðxÞj4, which serves

as a proxy for localization [95]. For the undeformed
kagome lattice, the sole difference between the periodic
and open boundary spectra is the presence of a subexten-
sive number of localized topological modes that span the
band gaps. However, when we introduce a small deforma-
tion to the kagome lattice [Figs. 3(e)–3(g)], we observe a
dramatic departure [96]. We find that the open boundary
system not only contains gap-spanning boundary modes,
but the bulk bands become highly localized and their
distribution in the complex plane changes dramatically. It is
instructive to note the qualitative difference between the
topological and skin modes [Figs. 3(d) and 3(h)].
The localized bulk modes are confined to a single direction,

whereas the topological modes are confined to all bounda-
ries and decay into the bulk.
Conclusions.—Our work brings to light the non-

Hermitian phenomena that arise at the boundary of elastic
media for which energetic sources (powered by internal
activity or external fields) modify the relationship between
static deformation and stress.
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