
 

Dissipation-Based Quantum Sensing of Magnons with a Superconducting Qubit
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Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields.
Here, we experimentally demonstrate quantum sensing of a steady-state magnon population in a
magnetostatic mode of a ferrimagnetic crystal. Dispersively coupling the magnetostatic mode to a
superconducting qubit allows for the detection of magnons using Ramsey interferometry with a sensitivity
on the order of 10−3 magnons=

ffiffiffiffiffiffi
Hz

p
. The protocol is based on dissipation as dephasing via fluctuations in

the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.
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Quantum states are intrinsically fragile with regards to
external perturbations. This property is leveraged in quan-
tum sensing, where appropriate quantum systems can be
monitored to detect a signal [1]. Superconducting qubits are
attractive candidates for quantum sensors [1–8] as their
large electric dipole moment enables strong coupling to
electromagnetic fields [9,10]. Recent developments of
hybrid quantum systems extend the range of applicability
of qubits as quantum sensors through coupling the qubits to
additional degrees of freedom [11–16].
Magnons, the quanta of collective spin excitations in

magnetically ordered systems [17,18], provide a rich
emerging platform for advances in quantum technologies
[19–26]. The presence of large quantities of magnons is
typically detected using techniques such as electromagnetic
induction [17], the inverse spin-Hall effect [27–29], or
Brillouin light scattering [30,31]. Recently, single-shot
detection of a single magnon was demonstrated in a
superconducting-qubit-based hybrid quantum system,
bringing the equivalent of a high-efficiency single-photon
detector to the field of magnonics [16]. Such an approach,
carried out by entangling the qubit and magnetostatic
mode, can be used to verify that a magnon is present at
a given time. However, a different measurement scheme is
desired to detect a steady-state magnon population, for
example when characterizing weak continuous magnon
creation processes.
In this Letter, we demonstrate dissipation-based quantum

sensing of magnons in a magnetostatic mode by utilizing a

transmon qubit as a quantum sensor. The hybrid device
architecture allows for an engineered dispersive interaction
between the qubit and magnetostatic mode, operated in the
strong dispersive regime [15,16,21,32–34]. Fluctuations
of the magnon number in the magnetostatic mode induce
dephasing in the qubit in proportion to the magnon
population and, as such, measurements of the coherence
of the qubit yield information about the average number of
magnons in the mode [34]. Characterization of the sensing
procedure reveals a magnon detection sensitivity on the
order of 10−3 magnons=

ffiffiffiffiffiffi
Hz

p
, in good agreement with

numerical simulations.
The hybrid system used in the experiments consists

of a transmon-type superconducting qubit and a single-
crystal yttrium-iron-garnet (YIG) sphere [Fig. 1(a)], both
mounted inside a three-dimensional microwave copper
cavity [19,20]. The TE102 mode of the cavity has a dressed
frequency of 8.448 GHz. The transmon qubit has a
dressed frequency of 7.914 GHz and anharmonicity of
−0.123 GHz. A magnetic circuit consisting of a pair of
permanent magnets, an iron yoke, and a superconducting
coil is used to apply a uniform magnetic fieldB0 to the YIG
sphere, magnetizing it to saturation. The amplitude of the
applied magnetic field, which can be tuned by changing the
current in the coil, sets the frequency ωm of the uniform
magnetostatic mode, or Kittel mode, in the YIG sphere
[35]. The Kittel mode couples to the cavity mode through a
magnetic dipole interaction of 23 MHz [35,36]. Similarly,
the qubit couples to the cavity mode through an electric
dipole interaction of 130 MHz [9,10,37,38]. The mutual
couplings with the cavity result in an effective coupling
between the qubit and Kittel mode of 7.07 MHz [19,20].
Here, the qubit and Kittel mode are detuned so that the

coupling between them is dispersive, characterized by a
dispersive shift per excitation, 2χq−m. At such an operating
point, the qubit frequency becomes dependent on the
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magnon state although direct energy exchange is sup-
pressed [32–34]. Measuring the qubit state thus yields
different results depending on the number of magnons
present in the Kittel mode. In the experiment, the Kittel
mode frequency ωm=2π ≈ 7.781 GHz is fixed such that the
system is in the strong dispersive regime, where the
dispersive shift is greater than the linewidth of either
system [32–34]. This can be verified via Ramsey interfer-
ometry as in Fig. 1(b), examining a Fourier transform of the
Ramsey oscillations to reveal the magnon-number splitting
of the qubit spectrum as in Fig. 1(c) [16,21,39]. The shift
per excitation is 2χq−m=2π ¼ −3.48 MHz, compared to the
qubit linewidth γq=2π ¼ 0.36 MHz and magnon linewidth
γm=2π ¼ 1.6 MHz. Magnons in the Kittel mode induce
both increased dephasing and a continuous frequency shift
of the qubit. However, for the qubit resonance for the
magnon Fock state nm ¼ 0, only the former remains in the
strong dispersive regime as the latter is suppressed [32,39].
Sensing of a steady-state population of a coherent state

of magnons in the Kittel mode is carried out by performing
Ramsey interferometry on the qubit. The sensitivity S is
defined as the smallest measurable value of the magnon
population that can be detected with a unit signal-to-noise
ratio over a one-second integration time [1]. Figure 1(d)
shows the magnon detection sensitivity S calculated from

an analytical model as a function of the magnon linewidth
γm for two values of the dispersive shift amplitude jχq−mj,
with all other parameters similar to those in the experiment
[39]. For values up to γm ≈ 4jχq−mj, increasing the magnon
linewidth improves the sensitivity with a scaling S ∼ 1=γm,
demonstrating that the sensing is governed primarily by
dissipation in the Kittel mode. Notably, within the strong
dispersive regime with γm < 2jχq−mj, further increasing the
amplitude of the dispersive shift jχq−mj has a negligible
effect on the sensitivity as the magnon-number peaks are
already sufficiently resolved.
The sensitivity is benchmarked by using a microwave

drive applied near resonance with the Kittel mode to excite
a coherent state of magnons with an average population n̄m
with the qubit in the ground state [Fig. 1(b)]. The magnon
population excited by a given drive amplitude is calibrated
from the qubit spectrum as in Fig. 1(c) [39]. During the
continuous magnon excitation, two π=2 pulses around the
same axis are applied to the qubit, separated by a free
evolution time corresponding to the sensing time τ. At the
end of the sequence, the qubit state is measured using
the high-power readout technique [45]. Measurements of
the qubit state are taken over 104 to 106 averages. For
n̄m ¼ 0, the probability of the qubit being in the excited
state peðn̄m ¼ 0Þ is determined primarily by the sensing

(a) (b)

(c)

(d)

FIG. 1. (a) Photographs and schematics of a 0.5-mm-diameter single-crystal yttrium-iron-garnet (YIG) sphere and a superconducting
transmon qubit. A static magnetic field B0 magnetizes the YIG sphere to saturation. The Kittel mode couples dispersively to the qubit
with a dispersive shift χq−m. The Kittel mode and qubit have linewidths γm and γq, respectively. (b) Pulse sequence used for the quantum
sensing of magnons. Two X̂π=2 pulses with frequency ωs, separated by the sensing time τ, are applied to the qubit as in conventional
Ramsey interferometry, followed by a readout of the qubit state. A continuous drive close to resonance with the Kittel mode creates a
coherent state of magnons with population n̄m. (c) Qubit spectra obtained from Ramsey interferometry with a steady-state magnon
population n̄m ¼ 0 (blue circles) and 0.61 (red dots). The detuning jω − ωsj=2π is relative to the qubit control frequency ωs=2π, which is
itself detuned from the qubit frequency by −4 MHz to induce Ramsey oscillations (shown in the inset up to τ ¼ 1 μs) from which the
spectra are obtained. Solid black lines show fits to a model. The spectra are normalized to the maximal value of the fit for n̄m ¼ 0.
(d) Magnon detection sensitivity S calculated as a function of the Kittel mode linewidth γm=2π, for amplitudes of the qubit–magnon
dispersive shift jχq−mj=2π ¼ 2 MHz (solid line) and 10MHz (dashed line). The sensing time τ ¼ 0.89 μs is fixed to be equal to the qubit
coherence time T�

2 ¼ 2=γq measured in the experiment with no magnons present.
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time τ, qubit drive detuning Δs, and the initialization,
control, and readout errors. Due to the dispersive inter-
action, peðn̄m > 0Þ depends on the magnon population n̄m,
as in Fig. 2(a) for τ ¼ 0.8 μs and qubit drive detuning
Δs ¼ 0. For n̄m ≪ 1, this dependence can be approximated
with

peðn̄mÞ ¼ peð0Þ � ηn̄m; ð1Þ
where the sign depends on the qubit drive detuning and
sensing time, and η is the efficiency of detecting magnons
with the qubit, defined to be positive [39]. A fitted value of
η ¼ 0.70ð3Þ is obtained from the data of Fig. 2(a). The
sensing signal corresponds to the difference between the
probability pe with and without magnons present in the
Kittel mode. As the qubit excitation probability is bounded
and converges to a fixed value, values of n̄m sufficiently
larger than those used here lead to detector saturation and a
loss of validity of the linear model of Eq. (1). The saturation

point can be adjusted by modifying the dispersive shift
in situ, at the expense of the sensitivity. Here, the device is
configured to achieve the best possible sensitivity.
To characterize the noise associated with the sensing

procedure, repeated single-shot readout of the qubit is
carried out, shown in Fig. 2(b). Such a measurement also
allows for quantifying the fidelity of the qubit readout, here
estimated at around 90% [39]. The scaling of sensor noise
for different measurement times is given by the Allan
deviation as shown in Fig. 2(c), which can be expressed in
terms of the qubit probability, ΞqðTÞ, or the magnon
population, ΞmðTÞ ¼ ΞqðTÞ=η. This corresponds to the
standard deviation of subsets of the data as a function of
measurement time T ¼ Nτtotal, where N is the number of
shots and τtotal ¼ 5 μs is the duration of a single sequence.
As shown in Fig. 2(c), the sensitivity S is related, by
definition, to the Allan deviation via

ΞmðTÞ ¼ S=
ffiffiffiffi
T

p
: ð2Þ

Fitting Eq. (2) to the data yields a sensitivity of
S ¼ 1.55ð5Þ × 10−3 magnons=

ffiffiffiffiffiffi
Hz

p
, which corresponds

to a microwave magnetic field sensitivity of 1.86×
10−15T=

ffiffiffiffiffiffi
Hz

p
[39]. The data is seen not to deviate signifi-

cantly from the scaling up to T > 1 s, implying that the
noise floor due to slow fluctuations has not been reached
and scaling the noise to T ¼ 1 s is valid. Numerical
simulations modeling the dispersive qubit-magnon inter-
action and imitating the experimental protocol yield a
sensitivity of 1.35 × 10−3 magnons=

ffiffiffiffiffiffi
Hz

p
, showing excel-

lent agreement with the experimental results. A single
fitting parameter is used, but it is seen not to affect the value
of the sensitivity significantly at zero detuning [39].
The underestimation of the sensitivity by the simulation
is probably due to additional interactions that are not
accounted for in the dispersive Hamiltonian considered
in the simulations.
The sensing time τ is a fundamental parameter that

can be used to investigate the performance of the sensor.
The efficiency η is measured as a function of sensing
time τ, as in Fig. 3(a) for Δs ¼ 0. This reveals a weak
optimum, as information acquisition saturates rapidly but
qubit decoherence has a relatively slower falloff with
T�
2 ¼ 0.89 μs. Numerical simulations, the results of which

are shown as a solid line in Fig. 3(a), are in good agreement
with the data and reproduce all essential features. The
oscillations are due to dynamical detuning of the magnon
frequency as the excited state of the qubit is populated
during the sensing sequence.
Characterization of the noise associated with repeated

measurements is also carried out as a function of sensing
time, calculating the Allan deviation of the qubit excita-
tion probability for a one-second measurement time,
ΞqðT ¼ 1 sÞ, as shown in Fig. 3(b) for Δs ¼ 0. The solid
line in Fig. 3(b) shows the qubit shot noise [1] given by

(c)

(b)

(a)

FIG. 2. (a) Qubit excited-state probability pe as a function of
the magnon population n̄m. Equation (1) is fitted to the data to
yield the magnon detection efficiency η ¼ 0.70. (b) Demodulated
signal ΔV for a subset of single-shot qubit measurements.
Horizontal dashed lines indicate the demodulated signal corre-
sponding to the qubit in the ground state jgi and excited state jei.
(c) Magnon population Allan deviation Ξm as a function of
measurement time T. The solid line indicates a fit to Eq. (2). The
horizontal dashed line indicates the value of Ξm for T ¼ 1 s
(vertical dashed line), corresponding to the magnon detection
sensitivity S ¼ 1.55 × 10−3 magnons=

ffiffiffiffiffiffi
Hz

p
.
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ΞqðT ¼ 1 sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peð1 − peÞ

τtotal
1 s

r
; ð3Þ

where pe ¼ peðn̄m ¼ 0Þ. This shows excellent agreement
between theory and experiment, as the high-fidelity pro-
jective qubit readout is shot-noise limited as noise from
components such as amplifiers has been digitized, ensuring
that the qubit readout process is not the dominant constraint
on the magnon detection sensitivity. Figure 3(c) shows
the sensitivity S as a function of the sensing time τ obtained
from the efficiency η and noise Ξq. The optimal sensing
time is seen to be approximately half of the qubit coherence
time T�

2 ¼ 0.89 μs, with the best sensitivity S ¼ 1.42ð3Þ ×
10−3 magnons=

ffiffiffiffiffiffi
Hz

p
measured for τ ¼ 0.5 μs. Such an

optimal time is equivalent to that of procedures based on
sensing via a frequency shift [1].
The relative contributions of dephasing and frequency

shifts to the sensitivity are revealed in this case by
examining the Ramsey fringes as in Fig. 4(a). Here, these
are measured by sweeping the relative detuningΔs between
the frequencies of the qubit and the π=2 pulses applied to
the qubit during the sensing protocol. The Ramsey fringes
show a reduction of contrast when a finite magnon
population is present in the Kittel mode, but do not exhibit

a significant frequency shift. Figure 4(b) shows that the
optimal sensitivity is obtained near zero detuning, and
becomes asymptotically worse when approaching detun-
ings corresponding to nodes of the Ramsey fringes. Con-
sequently, the dissipation of magnons is verified as the
dominant mechanism by which the qubit is sensitive to the
magnon population within the strong dispersive regime,
and increasing the linewidth of the Kittel mode up to γm ≈
4jχq−mj would improve the sensitivity by as much as a
factor of three without other changes [39].
These conclusions reflect the qualitative behavior

explored in Fig. 1(d), and thus the procedure presented
here falls under the category of sensing techniques known
as T�

2 relaxometry [1]. Such a conclusion contrasts with
previous approaches such as in Ref. [16], where the sensing
of magnons is based on entanglement of the qubit and
Kittel mode and is thus greatly hindered by an increased
magnon dissipation rate, even in the strong dispersive
regime.
The demonstrated level of sensitivity represents a sig-

nificant advancement relative to existing magnon detection
schemes, where the typical quantity of detected magnons is
many orders of magnitude larger [28,29,46]. Furthermore,
detection on the level of single magnons and below can be
useful for probing magneto-optical effects in the quantum
regime as part of the development of quantum transducers
[21,23], and may be used in dark matter searches for
axionlike particles [47–50]. The device can also be used as
a static magnetic field sensor, as the detuning of the Kittel

(c)

(a)

(b)

FIG. 3. (a) Magnon detection efficiency η, (b) noise of single-
shot qubit readout for one-second measurement time, Ξqð1 sÞ,
and (c) magnon detection sensitivity S as a function of sensing
time τ. In (a) and (c), solid black lines are results from numerical
simulations. In (b), the solid black line is the shot noise calculated
from Eq. (3).

(b)

(a)

FIG. 4. (a) Qubit excited-state probability pe and (b) magnon
detection sensitivity S as a function of Ramsey detuning Δs=2π.
The probability pe is shown for the cases of sensing different
steady-state magnon populations n̄m ¼ 0 (blue circles) and n̄m ¼
0.05 (red dots), with the shaded region indicating the difference.
Dashed vertical lines correspond to nodes of the Ramsey fringes.
Solid black lines are results from numerical simulations.
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mode by such a field is measurable by monitoring the
magnon population excited by a fixed microwave drive. In
this way, the magnetic-field-insensitive transmon qubit can
be made sensitive to the applied field in a controlled
manner. Interactions beyond the dispersive qubit-magnon
interaction, such as that due to the cavity-magnon cross-
Kerr interaction [21,51], could also be utilized for magnon
sensing. They could potentially offer further improvements
in sensitivity alongside enabling continuous sensing.
In conclusion, we have demonstrated that probing the

coherence of a superconducting transmon qubit disper-
sively coupled to a magnetostatic mode allows for quantum
sensing of magnons with a sensitivity on the order of
10−3 magnons=

ffiffiffiffiffiffi
Hz

p
. The device parameters and operating

point of the protocol lead to the qubit becoming sensitive to
the magnon population primarily through magnon decay.
Counterintuitively, this results in the detection sensitivity
being improved by increasing losses in the magnetostatic
mode while operating close to or in the strong dispersive
regime. The results presented here constitute an advance-
ment in the detection and characterization of small magnon
populations, and are also applicable to other physical
systems in microwave quantum optics [6–8] and quantum
acoustics [13–15], for example. The protocol demonstrated
here therefore provides tools for a broad range of fields,
from magnon spintronics to quantum sensing and hybrid
quantum systems.
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