
 

Photonic Topological Mode Bound to a Vortex
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We report the observation of a mode associated with a topological defect in the bulk of a 2D photonic
material by introducing a vortex distortion to a hexagonal lattice analogous to graphene. The observed
modes lie midgap at zero energy and are closely related to Majorana bound states in superconducting
vortices. This is the first experimental demonstration of the Jackiw-Rossi model [R. Jackiw and P. Rossi,
Nucl. Phys. B190, 681 (1981)].
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Introduction.—Phenomena associated with the topologi-
cal characteristics of physical systems are of wide-reaching
interest in many fields in physics, with applications ranging
from condensed matter physics [1–3] to particle physics
[4,5] and cosmology [6]. Most prominently topology has
been applied in condensed matter physics, where the
importance of the topology of the band structure was first
recognized in the discovery of the integer quantum Hall
effect [7]. Subsequently many classes of topological
insulators and superconductors have been discovered [2].
A key characteristic of a system with nontrivial topology is
the presence of topological invariants, integer numbers that
classify the topological structure. They are preserved under
smooth, homotopic deformations of the Hamiltonian. At
the boundary between domains governed by different such
invariants, where the topology abruptly changes, a topo-
logical defect occurs. Localized at these defects are states
protected by the topology of the system: they are robust to
errors in the underlying Hamiltonian. These edge states
have been investigated extensively in photonic platforms
[8–12]. Their study generated important insight into the
physics of topological insulators [10] and spawned tech-
nological advances such as the development of topological
lasers [13], where lasing occurs in edge states, protected
from imperfections. Here, in contrast, we investigate for the
first time a state bound to a vortex, a point defect, in the
bulk of a 2D photonic material (photonic graphene). These
modes are zero modes, as they lie midgap, at zero energy.
The vortex-bound zero modes we consider here are of
significant interest to solid-state physics. In topological
superconductors they support Majorana bound states at the
vortex core [2,14–16]. The vortex defects we realize here
are photonic analogues of the vortices in topological
superconductors explored by Reed, Green [16], and
Volovik [15]. Majorana bound states at these vortices are
a promising candidate for the realization of a topological
quantum computer [17]. The Jackiw-Rossi [5] model was

originally introduced in a quantum field theory context to
describe fermions in a 2þ 1D system coupled to a complex
scalar field in the Dirac equation. Jackiw and Rossi [5]
demonstrated that if the scalar field contains a vortex it
supports localized zero-energy solutions at the vortex core.
Witten [6] also considered the Jackiw-Rossi–type vortex
defect in the context of superconducting cosmic strings.
Particles in a tight-binding model of graphene can be

shown to obey a Dirac equation near the Dirac cones in the
band structure. Hou, Chamon, and Mudry [18] predicted
zero modes in graphene which realize the Jackiw-Rossi
model: Small perturbations to the graphene lattice induce
the scalar-field coupling to the effective Dirac equation
governing the graphene tight-binding model. A photonic
platform allows for a high degree of control over the system
parameters and is thus a powerful tool to investigate
topological effects, where in solid state systems this degree
of control is notoriously difficult to engineer. The vortex
topological defect is realized by introducing a distortion to
the waveguide position in a hexagonal waveguide lattice as
was suggested by Iadecola et al. [19]. We show adiabatic
transport of the zero mode as the vortex is moved, as well as
topological protection against imperfections of the wave-
guide lattice.
Theory.—The wave function evolution generated by a

tight-binding Hamiltonian can be mapped directly to the
coupled mode equations of light propagating through a
photonic crystal, where the time dimension in the
Schrödinger equation takes the role of the propagation
direction of the light through the crystal:

i
∂ψ rðzÞ
∂z ¼

X3

j¼1

Hr;rþsjψ r�sjðzÞ; ð1Þ

ψ rðzÞ is the electric field amplitude at lattice site r and z is
the length of the crystal the light has propagated through, sj
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points to its jth nearest neighbor (see Fig. 1). The complex
scalar field ΔðrÞ containing the vortex can be simulated by
introducing a distortion δr;sj to the nearest neighbor
hopping strength t of graphene [18]:

Hr;rþsj ¼ −t − δr;sj

δr;sj ¼
1

2
ΔðrÞeiKþsjei2iKþr þ c:c:; ð2Þ

Kþ ¼ ½4π=ð3 ffiffiffi
3

p
aÞ; 0� marks the position of Dirac point in

the reciprocal lattice. a is the lattice constant. The explicit
form of ΔðrÞ containing a vortex at r ¼ 0 is

ΔðrÞ ¼ Δ0ðrÞeiðαþNϕÞ

Δ0ðrÞ ¼ Δ0 tanhðr=l0Þ; ð3Þ

where ϕ is the polar angle of r, l0 the width of the vortex, α
the phase of the vortex and N the vorticity, the topological
invariant of the system. The sign of the vorticity determines
which of the two triangular sublattices of graphene (see
Fig. 1) supports the mode (1 for sublattice A, −1 for
sublattice B). In this work we set its value to 1: the mode is
confined to sublattice A, whereas the distortion is applied to
sublattice B. For the vortex phase we chose α ¼ π=2. The
radial dependence of the zero mode wave function ϕAðrÞ
localized on sublattice A [a solution to the mode-coupling
equations, Eqs. (1)] is given by [15,18,20]

ϕAðrÞ ∼ ei½−ðα=2Þþðπ=4Þ�e−
R

r

0
dr0Δ0ðr0Þ: ð4Þ

The electrical field strength is given by

Eðr; z; tÞ ∼ Re½ðϕAðrÞeiKþr þ c:c:Þeikωz−iωt�; ð5Þ

where r points to a lattice site on the supporting sublattice
A. The vortex in ΔðrÞ and the zero-mode state bound to it
are visualized in Fig. 2(a). The distortions δr;sj of the
coupling Hamiltonian are implemented with small shifts in

the waveguides’ positions [illustrated in Fig. 2(b)], assum-
ing exponential decay of the field away from the
waveguides. The exponential decay was measured experi-
mentally for different waveguide positions and relative
orientations (see Supplemental Material, IV [21]). We note
that it is the collective effect of small distortions applied to
every lattice site which gives rise to the topologically
confined mode at the center of the vortex defect.
Experimental results.—Excitation of the vortex mode:

First, we demonstrate a stationary photonic bulk zero mode.
The vortex distortion is located at the center of the lattice, as
shown in Figs. 2(a) and 2(b). In Fig. 2(c), comparing the
experimental result (top) and the theoretical calculation
(bottom), we see that they match very well. The waveguide
mode intensity pattern is governed by Eqs. (4) and (5). The
mode is excited using seven individual phase and amplitude
tuned beams directed at waveguides on sublattice A
carrying the majority of the mode [Fig. 2(d)]. We use a
gradient descent algorithm to optimize the phases and
amplitudes for maximum overlap with the zero mode (see
Supplemental Material, II). The light in the zero mode is
tightly confined to the center of the vortex and decays
quickly outside the radius of the vortex l0 ¼ 20 μm, with a
decay length governed by Eq. (4). Most of the intensity is
confined to the sublattice which carries the bulk zero mode,
as designed. Residual background originates from imper-
fect overlap of the exciting light field with the zero mode.
Other imperfections arise from residual next-nearest neigh-
bour coupling (see Supplemental Material, V). We estimate
the ratio of nearest to next nearest neighbor coupling
strength to be less than 5%. To quantify the degree to
which this intensity pattern represents the zero mode, we
introduce the ratio of light intensity between the two
sublattices:

γAB ¼ light intensity in sublatticeA
light intensity in sublatticeB

ð6Þ

as a measure of fidelity for the excitation of the mode,
which should be confined to one sublattice only. For a
mode confined to sublattice A, we expect γAB ≫ 1. The
measured mode displayed in the top panel of Fig. 2(c) has
γAB ¼ 4.8. To ensure we only consider contributions from
the zero mode, we integrate the light intensity within a
30 μm radius around the vortex center.
Adiabatic translation of the zero mode: Next, we trans-

late the vortex zero mode transversely across the waveguide
lattice by adiabatically shifting the vortex from one side of
the lattice to the other by around 100 μm. In the experi-
ment, a 9 cm long chip is used to ensure adiabatic
translation of the zero mode. We can observe transverse
translation of the zero-mode with most of the transmitted
intensity confined around the center of the shifted vortex
and in the correct sublattice [with a ratio of γAB ¼ 4.7,
Fig. 3(a), top panel]. The measured mode is no longer

FIG. 1. Hexagonal lattice with two triangular sublattices (A and
B) in blue and red, lattice vector r and vectors between nearest
neighbors sj indicated.
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symmetrical, likely due to small variations in waveguide
lattice fabrication which can easily shift the relative
intensities within waveguides in the zero mode. In the
bottom panel of Fig. 3(a), we show what happens if we try
to excite the mode at a position in the lattice where there is
no vortex present. As expected, we are not able to excite a
mode and see no light transport. The ratio of intensities
is γAB ¼ 0.67.
Topological protection: To demonstrate that the zero

mode is topologically protected against random errors of
the lattice, we deliberately introduce an error to the position
of the waveguides by shifting them by a random distance,
sampled from a two-dimensional uniform distribution,
where the radius rd of the distribution corresponds to
the maximum shift applied. We note that our mode is
protected against any error which preserves chiral
symmetry, such as random errors in waveguide position.
In Fig. 4, we show the recoded zero modes at four different
distortion levels with rd ¼ 0, 200, 400, 600 nm,

respectively. The systematic topological distortion, which
is introduced to the hexagonal lattice for the formation of
the vortex, is approximately 850 nm. We can observe that
the zero mode remains visible even when large random
errors in waveguide position are introduced. The larger the
error distortion, the more light leaks into the other sub-
lattice. We measure a steadily decreasing amount of light in
the correct sublattice γAB ¼ 3.8, 2.9, 2.2, 2.1 as the error
distortion increases.
Methods.—Waveguide lattice: Our photonic crystal lat-

tices are fabricated in glass through femtosecond laser
direct writing [30] (see also Supplemental Material, III). By
employing advanced aberration correction techniques [31],
we are able to write waveguide lattices of good homo-
geneity in depths of up to 1 mm. The dimension of the
waveguide lattice is around 400 × 400 μm. Each wave-
guide lattice consists of 1192 waveguides that are arranged
to form a hexagonal lattice. The distance between lattice
sites is around 10 μm.

(b) (c)(a)

(d) (e)

FIG. 2. (a) Photonic lattice with ΔðrÞ represented by red arrows. Bulk zero-mode intensity for dominant modes indicated at the center
of the vortex. For visualizing the order parameter, the complex function ΔðrÞ is mapped onto a vector field through the correspondence
C → ðRe½ΔðrÞ�; Im½ΔðrÞ�Þ. (b) Shift of the waveguide positions from the graphene lattice configuration, which implements the
topological vortex distortion, indicated by green arrows. (c) Comparison between the camera image of an observed stationary
topological bulk zero mode (top) and the theoretical model (bottom). The theory has been convolved with a Gaussian to approximate the
modes of the waveguides. (d) Illustration of multibeam excitation of the photonic lattice. An array of phase and amplitude tuned beams
directed at individual waveguides carrying the majority of the intensity is used to achieve coherent excitation of the zero mode in the
center of the vortex. (e) Image of the end facet of the silica chip, showing the full lattice of 1192 waveguides.
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Mode excitation scheme: To excite the bulk zero mode,
we developed a method based on an spatial light modulator
to simultaneously illuminate multiple waveguides with
beams of individually controlled phase and amplitude, as

illustrated in Fig. 2(d). As coherent light source we use a
laser diode at 785 nm. Multiple beams (up to 13 in the
present work) are directed at individual waveguides near
the center of the vortex. Phases and amplitudes of all beams
are tuned to excite the zero mode (setup described in the
Supplemental Material, I).
Conclusion.—We have demonstrated for the first time an

experimental implementation of the Jackiw-Rossi model
and observed the characteristic topological vortex zero
mode in a photonic lattice. We excited the spatially
delocalized mode at multiple sites, enabling us to resolve
its structure. We showed that the mode can be adiabatically
shifted across the photonic lattice and that it is topologi-
cally protected. Possible applications of these modes may
lie in the protection of information encoded in quantum
states against inevitable fabrication errors [11,32] in linear
optical circuits by injecting multiple entangled particles
into different protected vortex modes. Further, the degree of
control we have demonstrated over these localized, pro-
tected topological bulk zero-modes may in the future
enable applications probing the effects under exchange
of multiple zero modes, as was suggested by Iadecola et al.
[19]. These modes will accumulate a geometric phase when
two of them are braided around each other.
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Note added—Following our work, Noh et al. [33] have
recently explored this type of defect, suggesting a geo-
metric phase may be observed in a system consisting of a
stationary, strongly localized defect mode and a simulated
second defect. Moreover, our demonstration also provides

FIG. 4. Topological mode with random error distortions. Top
left: no error, Top right: maximum 200 nm, Bottom left:
maximum 400 nm, Bottom right: maximum 600 nm. The ratios
of light intensity in the zero-mode sublattice to the nonmode
supporting one are γAB ¼ 3.8, 2.9, 2.2, 2.1, respectively. The
color map of each image is normalized independently.

(a) (b)

FIG. 3. (a) Top panel: Recorded bulk zero-mode transverse
translation, in which the zero mode is translated from left [at input
side schematically shown in (b)] to right (at the output side) of the
lattice. Red dots indicate the positions of the 13 beams used to
excite the zero mode at the input. The circled waveguide marks
the position of the center at the input side. γAB ¼ 4.7. Bottom
panel: the same number of waveguides are excited on the input
side of the lattice, where no vortex is present. At output side,
γAB ¼ 0.67. Also, the total light intensity in the displayed region
is substantially less as most of the light is scattered into the rest of
the lattice. The color scale is normalized to the brightest peak in
both pictures. (b) Illustration of mode shifting by adiabatically
translating (solid arrow) the center of the vortex (dotted pattern)
along the longitudinal direction of the waveguide lattice; the
dashed arrow indicates the direction the vortex moves in.
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the possibility for further studying models employed in
high energy physics, as well as new implementations of
topological lasers other than those which have already been
demonstrated in edge states [13,34]. Recently, X. Gao et al.
[35] have implemented a Jackiw-Rossi–type defect in an
optical microcavity using a silicon on oxide (SOI) platform.
The authors envisage applications for vertical-cavity sur-
face-emitting lasers (VCSELs) that use this mode for stable
lasing. The topic of topological vortex defects has also
recently been explored in other platforms: P. Gao et al. [36]
realized a topological vortex defect in a sonic lattice. Chen
et al. [37] have studied a mechanical analogue of the
Jackiw-Rossi mode.
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