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In experiments and their interpretation usually the spin magnetic moment of magnons is considered. In
this Letter, we identify a complementing orbital magnetic moment of magnons brought about by spin-orbit
coupling. Our microscopic theory uncovers that spin magnetization M3 and orbital magnetization M© are
independent quantities; they are not necessarily collinear. Even when the total spin moment is compensated
due to antiferromagnetism, M© may be nonzero. This scenario of orbital weak ferromagnetism is realized
in paradigmatic kagome antiferromagnets with Dzyaloshinskii-Moriya interaction. We demonstrate that
magnets exhibiting a magnonic orbital moment are omnipresent and propose transport experiments for

probing it.
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Introduction.—Textbooks on magnetism introduce spin
waves as collective excitations of a magnetically ordered
ground state, as epitomized by ferromagnets (Ref. [1],
among others). The quanta of spin waves—the magnons—
are typically viewed as local deviations from the ordered
state [2,3]. Within this picture, it appears natural that the
magnetic moment carried by magnons has only spatial
components that are offered by the ground-state spin
texture, because the latter defines the directions relative
to which a deviation can occur [4]. This implies in
particular that collinear magnets feature only magnons
whose magnetic moment is along the collinear axis.
Likewise the magnetic moments of magnons of coplanar
magnets lie within that plane. This reasoning is widely
accepted and adopted for a plethora of transport phenomena
that involve the magnon magnetic moment, such as the spin
Seebeck [5], spin Nernst [6—14], and magnon Edelstein
effect [15,16] in ferromagnets [17] and in both collinear
[18-20] and noncollinear [13,14,21-23] antiferromagnets.

In this Letter, we challenge this paradigm by revealing an
additional magnonic property: their orbital magnetic
moment. Overall, the magnetic moment,

_ a‘c’ln,k o
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Pk = Hog + Bk (1)
of a magnon in band »n and with momentum 7k decomposes
into two contributions. These are derived from the explicit
and implicit dependence of the magnon energy ¢, with
respect to the magnetic field B. The first contribution,

ﬂi,k X =8, k> (2)

is the spin magnetic moment (SMM) which is proportional
to the magnon spin s, [4,16]. As mentioned above, this is
the contribution conventionally referred to as the magnetic
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moment of magnons. The second contribution ﬂgk—the
orbital magnetic moment (OMM )—captures the difference
of Egs. (1) and (2) and is the main object of interest in this
Letter. It is associated with an implicit dependence of ¢,
on B, which arises from the field-dependent relative
orientation of the magnetic texture to the structural lattice
[24] and, hence, requires spin-orbit coupling (SOC). The
SMM and the OMM result in macroscopic spin and orbital
magnetizations, M® and M©, respectively. These indepen-
dent quantities can be disentangled clearly in the situation
of magnonic orbital weak ferromagnetism, in which
M5 =0 but M? #0. Importantly, even if MY =0 in
equilibrium, the OMM may be addressed by an orbital
Nernst effect of magnons in nonequilibrium. As a conse-
quence, the complete set of magnonic degrees of freedom
may be utilized for insulator spintronics.

Identification of the orbital magnetic moment.—We start
with a generic spin Hamiltonian A = H. spin T Hye: ﬁspin
and Hyee = A ' up >, B - .S describe the spin-spin inter-
actions (where the magnetic field B does not enter) and the
coupling to the magnetic field (Zeeman term; 7 reduced
Planck constant, yz Bohr’s magneton), respectively. g; is
the g tensor of the spin operator S ; at site i. Assuming an
ordered ground state with N spins per magnetic unit cell
pointing along Z, (n =1, ..., N), we perform a truncated
Holstein-Primakoff (HP) transformation [25] from spin

operators to bosonic operators &ET), yielding H ~ E, + H,.
Here, E, is the classical ground state energy and
H, describes noninteracting magnons. After a trans-
formation to magnonic normal modes &fj,z in reciprocal

space, we obtain A~ E)+ AEy+ >, SN, enqk&;k&,,,k.
The harmonic  zero-point quantum fluctuations,
AEy = AEY) + AEY, with AE(") = -1, TrH,, and
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= % SN, €, x> provide a correction to E; Hj, is the Hamilton matrix. See the Supplemental Material [26], Sec. I,

for details.

When considering effective spin Hamiltonians, usually the spin magnetization ([26], Sec. II),

N
s T) = _ﬂ_‘f;zlgnzn(sn - <&j,,k

é\lrzA,k>)

N N N N
Up .~ HMp R 1 1
= - Vuc Z Sngnzn _m X;gnzn + ﬁ Z zk:ﬂg,k + ‘_/ Z zk:ﬂg,kp(gn,k’ T)’ (3)
n= n—= n= n=
M; amy amy® M;(T)

is addressed (V sample volume, V. volume of a unit cell,
(-) thermodynamic average). S, and g, are the length and
the ¢ tensor of the nth spin in the unit cell, respectively.
Although g, already incorporates SOC, we denote
M5 as a “spin” magnetization, because the set {g,}
merely transforms the directions Z,. The above
sum is decomposed into the classical ground state

I
AMS = aMS"Y + AMS®), and into MS(T), which is
due to the thermal population of magnons
[p(eu, T) = (¢** — 1)~! Bose-Einstein distribution func-
tion at temperature T = (kpf)~']. Eventually, p3, is the
SMM of magnons in band n with momentum k ([26],
Sec. 1II).

MS5(T) does not coincide with the thermodynamical
definition of magnetization ([26], Sec. III)

ZZ”nk‘l' ZZ”nkﬂ nkﬂ (4)

spin magnetization M3, its quantum corrections
|
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(© grand potential). u, ; is the full magnonic magnetic
moment defined in Eq. (1). The constituents of M are
defined in analogy to those of M.

To verify briefly that MS # M replace the g tensor by a
scalar (g, — g,). M is then restricted to those spatial
components offered by the Z,s; however, M and p,,; are
not, because the Z,,s themselves depend on B. Thus, even if
all z,s are collinear (or coplanar), u,, may have an
orthogonal component whose integral is nonzero;
hence, M } M5.

The observation M, = Mg ([26], Sec. IV) allows us to
trace the difference of M and M back to the difference
between u,, and ﬂ - More precisely, one obtains
Hnk = ﬂnk + ﬂn w in which the SMM is derived from
the explicit B dependence of the Zeeman energy and the
OMM ([26], Sec. V)

Oe,y Oa,
:_Z Z aa’: (5)

m=1 a=x,y,z

from the implicit B dependence of the local coordinate
system {%,,¥,,2,} [32]. Such a dependence has to result
from SOC (or SOC-like interactions), which couples spins

oar®) My(T)
~TV B

and lattice and therefore motivates the term ‘“‘orbital”
moment. The orbital magnetization,

MO(T) = Mg

N N
+%22ﬂ2k+$22ﬂ2kﬂ(5nkvnv (6)
k n=l1 n=1 k

AMO ) M9(T)

is absent in the classical ground state, since it is exclusively
due to quantum (AM(?'(1> + AM(?’(Z)
tions [M$(T)].

In what follows, we assume scalar ¢ factors and include
SOC exclusively via spin-spin interactions.

Orbital magnetic moments in equilibrium.—First, we
demonstrate how OMM can be probed in equilibrium as a
contribution to weak ferromagnetism. This phenomenon is
usually described at the level of classically antiferromagnetic
spin textures that exhibit a small canting, e.g., due to a
Dzyaloshinskii-Moryia interaction (DMI) [34,35] (Mg #+0).
Here, we predict pure orbital weak ferromagnetism: My = 0
but M© # 0. A system of choice is a kagome antiferromagnet
[Fig. 1(a)] with the spin Hamiltonian

) and thermal fluctua-
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FIG. 1. Weak ferromagnetism due to quantum fluctuations in
the NVC phase on the kagome lattice. (a) Structural lattice with Z,,
(n =1, 2, 3) indicated by colored arrows and DMI vectors by
black arrows. (b) Magnetization components M, (@ = x, y, z) at
zero temperature in dependence on ¢. Since |M| # 0, quantum
weak ferromagnetism is omnipresent; the out-of-plane magneti-
zation M, = MY is attributed to an orbital moment. Parameters
read J = 3.18 meV, S =5/2, D, = 0.062J, D=1 meV.

A

Q,UB
H= WZ( ~JS;-8;+D;-8; x8,)+~LB. Zs,,
(i)

(7)

whose classical phase diagram was derived in Ref. [36]. Each
spin interacts with its four neighbors via antiferromagnetic
exchange J < 0 and SOC-induced DMI. The DMI vectors
D;; are orthogonal to the respective bond [black arrows in
Fig. 1(a)] and have both an in-plane (D)) and an out-of-plane
component (D). For D, > 0 and |Dy| below a critical value,
the classical magnetic ground state is an antiferromagnetic
coplanar texture with negative vector chirality (NVC) [36]
[colored arrows in Fig. 1(a)]. The classical spin magnetization
vanishes (M = 0). For E,, exhibits an accidental degeneracy
under global in-plane rotation of all spins, we perform an
order-by-disorder study with respect to the rotation angle ¢
[insets in Fig. 1(b)]. Both quantum and thermal fluctuations
select the ¢p = 0 texture [Fig. 1(a)] and its z/3 rotations over
any other rotated texture ([26], Sec. IV). Nonetheless, we
proceed with studying all textures.

For the discussion we single out the phases for ¢ =0
with magnetic point group 2'/m’ (the prime indicates
additional time reversal) and ¢ = z/2 with 2/m [37]. In
both cases the twofold rotation axis is along the x direction
and the mirror plane coincides with the yz plane. Both
groups are compatible with ferromagnetism (Table I).
Besides an in-plane magnetization, the ¢p = 0 phase is also
compatible with a nonzero M,. Since Z,,=0 by
construction, any nonzero M, = M? must be attributed
to an orbital moment.

This symmetry analysis is fully confirmed by the
magnetization calculated from Eq. (4) [Fig. 1(b)]. Although

TABLE I. Magnetic point group and symmetry-imposed shape
of M for NVC phases with ¢ =0 and ¢ = /2.

Angle ¢ 0 /2
Magnetic point group 2/ /m’ 2/m
Compatible magnetization (OM, M) (M,00)

My(¢p) = M5(¢) =0 for all ¢, the quantum-corrected
magnetization is never compensated: |AM(¢p)| # 0.
Hence, the quantum fluctuations cause the weak

ferromagnetism, of both spin and orbital origin for M,
and M, but of pure orbital origin for M_. This finding
complements classical analyses of kagome antiferromag-
nets [36] and shows that even the NVC phase exhibits weak
ferromagnetism  without the need of higher-order
anisotropies beyond DMI [38]. It is also a counterexample
to the common belief that quantum fluctuations only
reduce the magnitude of the ordered moment.

The microscopic origin of M, # 0 can be studied on the
basis of the OMM g 4, /41 Kz of the lowest magnon band
(n = 1) for both phases (top row of Fig. 2; recall /41 ke =0).
Already an “ocular integration” over the Brillouin zone
reveals that M_(T) = M?(T) from Eq. (6) must be either
nonzero (¢ = 0) or zero (¢ = x/2), an observation con-
firmed by numerical integration (bottom row of Fig. 2). For
the ¢ = 0 phase |M_(T)| increases in absolute value with
temperature, showing that thermal fluctuations enhance the
quantum mechanical weak moment (the 7 dependence of
M, and M, is detailed in the Supplemental Material [26],
Sec. V).

That SOC is causing the orbital moment is supported
by noting that s, ., M.(T) = 0 as D — 0 (not shown).
If D = 0 the kagome plane is an m’ plane, which renders
M, zero by symmetry. Hence, in the absence of SOC-
induced spin-spin interactions, the orbital magnetization
vanishes.

Orbital magnetic moments in nonequilibrium.—Having
established signatures of OMMs at equilibrium, we now
focus on nonequilibrium and consider as an example
transport of magnetic moment—rather than spin—
in the pyrochlore ferromagnet Lu,V,0;. The spin
Hamiltonian [42]

A

QHB
= ZhZZ( ~JS;-8;+D;;-8; x8,)+~LB. st
(i)

(8)

includes DMI  vectors D;; = Dn;; xeé; that are
perpendicular to both the bonds &;; and the normal #;;
of the cube that surrounds that tetrahedron the bond
belongs to [43]. For J > 0, collinear ferromagnetism is
found, 2, = —b = —B/B (n = 1, ..., 4), and quantum fluc-
tuations are absent, AM, = 0.
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FIG. 2. Top: momentum-dependent OMM p 4 . of the lowest
magnon band (n = 1) in the Brillouin zone of the kagome
antiferromagnet in the NVC phase for ¢ =0 (left) and ¢ =
/2 (right). Bottom: temperature dependence of the orbital
magnetization M. Parameters as in Fig. 1.

The application of a magnetic field B = (0,0, B,) [44]
results in g, g, =ty . = gup and ppo = py, = O(D)
for a = x, y. Hence, the constant z component of u, 4 is a
SMM. The x and y components are OMMSs, however,
which for positive (negative) k, resembles a sourcelike
(sinklike) vector field, as depicted in Fig. 3.

In equilibrium, the OMM integrates to zero, M9 (T) = 0.
However, in nonequilibrium, it is transported in transverse
direction to a temperature gradient V7. In other words, this
is a Nernst effect (NE) for magnetic moment rather than for
spin. Its analysis focuses on the response tensor Y7 which
relates the nonequilibrium current density of the magneti-
zation with the temperature gradient: (jo) = Y} ,(=V,T)
with @, B,y =x, y, 2

5 L)
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FIG. 3. Orbital magnetic moments yy , and py , of the lowest

magnon band of the pyrochlore ferromagnet Lu, V,05. The color
scale represents y/p¢  + g, (in units of pp) in two selected

ky — ky planes: k, = 0.2z/a (left) and k, = —0.27/a (right); a is
the lattice constant.

TABLE II. Shape of response tensors Y7 (y = x, y, z) for the
magnetic point group 4/mm’m’. A subscript “e” (“0”) indicates
elements that are even (odd) under magnetization reversal.

T+ Ty Y3

o o0 T, 0 0 T, Y, T, 0
o 0 -7, 0o 0 T, -Y. ¥, 0
Y, =Y, 0 Y, T, 0 0o o0 T

Pyrochlore ferromagnets magnetized in z direction
belong to the magnetic point group 4/mm’m’, which
dictates the shape of Y7 (Table II). Tensor elements that
are even upon magnetization reversal (subscript “e”) are
associated with intrinsic contributions to the transport,
whereas odd elements (subscript “0”) are associated with
extrinsic contributions [13,45].

The elements T, and T, of Y* comprise a spin Seebeck
effect, while Te indicates an anomalous spin Nernst effect
(SNE) which is associated with spin-polarized transverse
particle currents caused by the Berry curvature
[12,37,42,46-50].

Besides transport of the z component, symmetry admits
transport of x and y components as well (Y* and YV in
Table II). Y, (Y,) comprises an anomalous SNE with
mutual orthogonality of force, current, and moment direc-
tions, whereas Y, (Y7) indicates a magnetic SNE [14].
Since the x and y components are OMMs, the respective
SNEs could be termed “magnonic orbital Nernst effects.”

The above symmetry analysis suggests straightaway an
experimental setup for probing OMMs. In a finite
pyrochlore sample with —VT || M ||z, OMM accumulates
at the surfaces parallel to M (xz and yz surfaces).
The resulting surface-located nonequilibrium tilt on M,
conceivably measured by magnetooptical Kerr microscopy,
would clearly indicate transport of magnonic orbital
magnetization.

We support the above analysis by calculating numeri-
cally all 27 elements of Y7 within Kubo transport theory
(Fig. 4; [26], Sec. VII). Vanishing elements (marked by
yellow background) agree with the zeroes in Table II; and
so does the either intrinsic (blue, “e”’) or extrinsic (red, “0”)
character. Except for the diagonal elements of 1%, all
elements scale with the strength D of the DMI, because
DMI causes either a nonzero Berry curvature (T,) or
OMMs (Y,, Y, Y, 7Y,). With an orbital Nernst
conductivity T¥, ~ —0.4 mJ/(TKms) at 7 =20 K and
V.T =25 K/mm, we find (j*) ~ 10 J/(Tm?s) (in units
of spin, this corresponds to 7 (j¥)/ug ~ 10710 J/m?).

Another class of magnets lends itself support for non-
trivial magnonic OMMs: chiral magnets, like Cu,0SeOs;,
which hold a prominent place in skyrmion research [52].
Their DMI-induced magnonic OMM [l,? is nonzero, but
integrates to MY =0 in equilibrium. Due to broken
centrosymmetry, however, a magnon current caused by
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FIG. 4. Transport of magnetic moment in the pyrochlore ferromagnet Lu, V,0;. The temperature dependence of all 27 elements of the
response tensors Y7 are depicted: y = x (left), y = y (center), and y = z (right). In each of the three-by-three subfigures, rows (columns)
represent the current direction p (direction v of the temperature gradient). The yellow background highlights vanishing elements. For the
extrinsic contributions (red lines), a transport relaxation time z,; = A/ (e, ) with a = 0.05 is assumed. Intrinsic contributions (blue
lines) are calculated in the so-called clean limit. Parameters read J = —7.99 meV, S = 1/2, D = 0.5659 meV, a = 2.49 A [42,51], and
B, = —0.69 T. The ordering temperature of Lu,V,0; is 70 K [42].

—VT exerts a torque on M [8,53], an effect that can be
explained as an orbital version of the magnon Edelstein
effect proposed in Ref. [16]; see the Supplemental Material
[26], Sec. VIIL

Dipolar interactions couple spins to the lattice as well. A
magnonic OMM—or better: dipolar magnetic moment—
could be identified as follows. Magnons with k } M
carry nonzero pd L M. Again, MY =0 in equilibrium,
but a dipolar-driven “orbital” Nernst effect should show
up for symmetry reasons, for example in yttrium iron
garnet (YIG); see the Supplemental Material [26],
Sec. IX.

Synopsis.—We introduced the orbital magnetic moment
of magnons and proposed two experimental signatures: (1)
weak ferromagnetic orbital moment in equilibrium and (11)
accumulation of orbital magnetic moment in nonequili-
brium due to a magnonic orbital Nernst effect. Since the
latter has the same symmetry as the spin Hall effect [54], it
should occur in any magnet with large enough SOC or
dipolar interactions. Hence, our results pave a way for an
all-insulator magnonic spin-orbit torque.

This work is supported by CRC/TRR 227 of Deutsche
Forschungsgemeinschaft (DFG).

Note added.—The magnonic OMM defined as the differ-
ence between total moment and SMM applies to any spin
Hamiltonian. For the Hamiltonians discussed in this Letter,
it can be traced back to the dependence of the local
coordinate axes on the magnetic field as written in
Eq. (5). The “topological orbital moment” and the resulting
orbital Nernst effect of magnons discussed in Ref. [33],
both of which rely on a special type of spin interaction,
namely three-spin ring exchange, is also captured by
Eq. (1) and would appear as an additional contribution

in Eq. (5). However, in the frame of this Letter, we confined
ourselves to bilinear spin-spin interactions.
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