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We present numerical evidence for the crystallization of magnons below the saturation field at nonzero
temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can
be traced back to the existence of independent localized magnons or, equivalently, flatband multimagnon
states. We present a loop-gas description of these localized magnons and a phase diagram of this transition,
thus providing information for which magnetic fields and temperatures magnon crystallization can be
observed experimentally. The emergence of a finite-temperature continuous transition to a magnon crystal
is expected to be generic for spin models in dimension D > 1 where flatband multimagnon ground states
break translational symmetry.
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Introduction.—Strongly correlated electronic spin sys-
tems may possess unusual and thus attractive properties
such as magnetization curves characterized by sequences of
magnetization plateaus with possible crystallization of
magnons as reported for Cd-kapellasite recently [1]. This
is of course a consequence of the intricate nature of their
many-body eigenstates [2–5], which, however, for, e.g.,
Hubbard as well as Heisenberg models under special
circumstances can express itself as destructive interference
that “can lead to a disorder-free localization of particles”
[6]. For translationally invariant systems this automatically
yields flat bands in the single-particle energy spectrum, i.e.,
in one-magnon space in the case of spin Hamiltonians
[7–14]. Today, flatband physics is investigated in several
areas of physics, and many interesting phenomena that
are related to flatbands have been found, see, e.g.,
Refs. [15–20]. Flatband systems can also be created using,
e.g., cold atoms in optical lattices [21,22] or by employing
photonic lattices [23–25].
Among the flatband systems, the highly frustrated

quantum antiferromagnets (AFMs) play a particular role
as possible solid-state realizations. There is a large variety
of one-, two-, and three-dimensional lattices, where at high
magnetic fields the lowest band of one-magnon excitations
above the ferromagnetic vacuum is completely flat [26,27].
These flatband antiferromagnets exhibit several exotic
features near saturation, such as a macroscopic magneti-
zation jump at the saturation field [10], a magnetic-field
driven spin-Peierls instability [28], a finite residual entropy
at the saturation field [13,14,29], a very strong magneto-
caloric effect [14,26,30], and an additional low-temperature

maximum of the specific heat signaling the appearance of
an additional low-energy scale [26].
The focus of the present Letter is on a prominent

example of a flatband spin system, the spin-half kagome
Heisenberg antiferromagnet (KHAF), that is a celebrated
paradigm of highly frustrated quantum magnetism [2–5].
The corresponding Hamiltonian is given by

H
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where the first term models the Heisenberg exchange
between spins at nearest neighbor sites i and j and the
second term provides the Zeeman splitting in an external
magnetic field.
In addition to the widely debated character of the spin-

liquid ground state (GS), the intriguing magnetization
process of the KHAF has attracted much attention
[1,10,13,14,26,28,29,31–40]. The magnetization exhibits
plateaus at certain fractions of the saturation magnetization,
namely atM=Msat ¼ 3=9 ¼ 1=3, 5=9, 7=9 and likely also
at M=Msat ¼ 1=9 [34,35]. In contrast to the semiclassical
M=Msat ¼ 1=3 plateau in the triangular-lattice Heisenberg
antiferromagnet, see, e.g., Refs. [41–43], the kagome plateau
states are quantum valence-bond states [13,14,28,33–35].
Moreover, around the M=Msat ¼ 7=9–plateau the flat
lowest one-magnon band [10] dominates the low-temper-
ature physics and leads to the exotic properties mentioned
above. Interestingly, the M=Msat ¼ 7=9 plateau state just
below the jump to saturation is a magnon crystal that is the
magnetic counterpart of the Wigner crystal of interacting
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electrons in two dimensions. Since the magnon crystal
spontaneously breaks translational symmetry, a finite-tem-
perature phase transition is possible. The challenge is to find
appropriate theoretical tools to describe such a transition for
the quantum many-body system at hand.
Remarkably, the very existence of a flat band allows a

semirigorous analysis of the low-temperature physics, e.g.,
for most of the one-dimensional flatband quantum spin
systems including the sawtooth chain [14,29,30] and also
for a few two-dimensional systems, such as the frustrated
bilayer [6,44,45], as well as the Tasaki lattice [46]. Such a
semi-rigorous analysis builds on the existence of compact
localized many-magnon states, which form either a
massively degenerate GS manifold at the saturation field
Bsat or a huge set of low-lying excitations for B≲ Bsat and
B≳ Bsat. For the KHAF, the compact localized many-
magnon states live on nontouching hexagons [10], which
can be mapped to hard hexagons on a triangular lattice
[13,14,26,29]. This situation is depicted in Fig. 1.
On the experimental side the growing number of kagome

compounds is promising with respect to possible solid-state
realizations of the kagome flatband physics [47–55]. Very
recently the magnetization process in high field was
reported for Cd-kapellasite [1]. The authors interpret the
observed plateau states “as crystallizations of emergent
magnons localized on the hexagon of the kagome lattice.”
We will address the relation to our investigations in the
discussion below.
Reliable predictions of the field-temperature regions

where the magnon-crystal phase exists are useful to
stimulate specific experiments. However, the semi-rigorous
analysis of the flatband properties of the KHAF based on
compact localized many-magnon states, i.e., the hard-
hexagon approximation (HHA) is limited because of the
existence of a macroscopic number of additional non-
compact localized many-magnon states [27]. A complete

description can be given in terms of a loop gas (LG) that we
elaborate in the Supplemental Material [56]. Moreover, at
nonzero temperature also nonlocalized eigenstates influ-
ence the thermodynamics of the KHAF.
Numerical method.—To investigate the KHAF near the

saturation field we present large-scale exact-diagonalization
(ED) studies using the finite-temperature Lanczos (FTL)
method for finite lattices of N ¼ 27;…; 72 sites, where we
have selected only lattices exhibiting the magnon-crystal
plateau at M=Msat ¼ 7=9, which excludes N ¼ 42 dis-
cussed in Ref. [37]. FTL is an unbiased numerical approach
by which thermodynamic quantities are very accurately
approximated by means of trace estimators [57–62].
Moreover, the consideration of six different lattices up to
N ¼ 72 allows us to estimate finite-size effects. For used
lattices and technical details see Ref. [56]. The kagome
lattices ofN sites correspond to triangular lattices ofNtrian ¼
N=3 sites. On symmetry grounds, triangular lattices of
Ntrian ¼ 9, 12, 21, i.e., N ¼ 27, 36, 63 sites seem to be
most appropriate for our investigation [56,63].
Results.—The magnetization curve around the 7=9

plateau and the jump to saturation are shown in Fig. 2.
The size independence of the height of the jump is obvious.
The width of the plateau, i.e., the field region where the
magnon-crystal phase can exist, is about 4% of the
saturation field and its finite-size dependence is weak,
cf. Ref. [35]. The finite-temperature transition to the
magnon-crystal phase can be driven either by temperature
when fixing B in the plateau region or by the magnetic field
when fixing T below the critical temperature Tc. CðB; TÞ is
an appropriate quantity to detect the transition. For finite
lattices the specific heat will not exhibit a true singularity,
rather we may expect a well-pronounced peak in C that
indicates the critical point. Furthermore, the peak has to
become sharper with increasing N.
First, we study the temperature profile CðTÞ for a

magnetic field slightly below saturation, B ¼ 0.99Bsat
(see Fig. 3). While the influence of N on the peak position

FIG. 2. Magnetization M=Msat: Region of the 7=9 plateau for
various finite-size realizations of the KHAF.

FIG. 1. Sketch of the crystal of localized magnons (of minimal
size) on the kagome lattice antiferromagnet. These localized
magnons (red discs) are superpositions of spin flips of spins
residing at the vertices of the confining basic hexagons of the
kagome lattice.
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Tmax is rather weak, the increase of the height Cmax with
growing N is significant and the peaks are sharpest for
N ¼ 63 and N ¼ 72.
Figure 4 presents a closer look at the results of Fig. 3 in

terms of some characteristic quantities where we include
the HHA [13,14] and the LG description [56] for com-
parison. In panel (a) we first present a comparison of the
total ground-state entropy per site. Since hard hexagons are
a subset of the loop configurations that in turn are a subset
of the KHA ground states, the values of S increase
correspondingly for a fixed N. For the HHA, the result
for the thermodynamic limit is known [13,14,64] and
shown by the horizontal blue line. We note that the result

for N ¼ 63 within the HHA is very close to this N ¼ ∞
limit. Since the finite-size effects of the LG and the KHA
are very similar to that of the HHA, we assume that also for
these models a system size of N ≥ 63 is at least necessary
to arrive at trustworthy results. It is thus a major achieve-
ment that by means of FTL such sizes are accessible.
We observe furthermore that nested loop configurations

do indeed give rise to another macroscopic contribution to
the ground states [27], and while this is approaching the ED
result for the KHA, there is yet another contribution to the
ground-state manifold that does not come from localized
magnons and thus cannot be captured by the LG either.
Figure 4(b) displays the size dependence of the position

of the maximum Tmax of the specific heat in all three
approximations. The thermodynamic limit of the HHA is
again known [13,14,65] and again shown by the horizontal
blue line. The positions for N ≳ 45 scatter around this
value, and since the finite-size effects of all three
approaches are again similar, we assume the same to be
true for the LG and the KHA. Thus, we conclude that the
critical temperature is lowered by the higher ground-state
degeneracy of the LG and the KHA by up to 50% as
compared to the HHA even for a field as close to the
saturation field as B ¼ 0.99Bsat.
Finally, Fig. 4(c) shows the size dependence of Cmax=N.

The range of accessible system sizes and lattice geometries
is too small to reliably extract critical exponents, but one
does observe a trend of Cmax=N to grow with increasing
system size N. To be more precise, the transition is
expected to belong to the universality class of the classical
two-dimensional three-state Potts model [13,14] for all
three cases. Thus, the asymptotic behavior of Cmax=N for
large N should be given by Cmax=N ∝ Nðα=2νÞ [66] with
critical indices α ¼ 1=3 and ν ¼ 5=6 [67,68].
Next, we consider the field dependence of the specific

heat for a representative low temperature T=J ¼ 0.01, see
Fig. 5, where we present data forN ¼ 63 (solid curves). For
the HHA, we include the result for the thermodynamic limit
N ¼ ∞ [13,14,65] (dashed curve). We note that both the
HHA and the LG scale with ðB − BsatÞ=T [13,14,26]. There
are two peaks left and right of the minimum in CðBÞ at
B ¼ Bsat which are related to the ground states of Fig. 4(a).
The curves for N ¼ 63 and ∞ of the HHA for the peak at
B > Bsat are indistinguishable, showing that this is not a
phase transition. The peaks of the LG and ED for B > Bsat
are at almost the same position but higher than for the
HHA, and they do not signal a phase transition either.
Remarkably, the LG is very close to the ED result for
B > Bsat, a fact that can be attributed to the LG reproducing
the exact ground-state degeneracy of the highest sectors of
total magnetic quantum number for the KHAF, see
also Ref. [56].
Turning to the region B < Bsat of Fig. 5, here the HHA is

known to exhibit a phase transition [13,14,65] whose
location is given by the divergence of the N ¼ ∞ curve

FIG. 3. Specific heat for B ¼ 0.99Bsat for various finite-size
realizations of the KHAF. ForN ¼ 45, 54, 63, 72, where too large
Hilbert subspaces had to be neglected, only the low-temperature
part of the specific heat is displayed; it is virtually exact for all
system sizes.

(c)

(a)

(b)

(a)

(b)

FIG. 4. System-size dependence of several characteristic quan-
tities at B ¼ 0.99Bsat for HH approximation, LG, and ED:
(a) entropy per site S=N associated to the total ground-state
degeneracy, (b) position of the maximum of the specific heat
Tmax, and (c) value of the maximum of the specific heat per site
Cmax=N. The horizontal blue lines in panels (a) and (b) show the
known thermodynamic limit for hard hexagons [13,14,64,65].
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(dashed). The peaks in the ED and LG curves just below
0.99Bsat should correspond to the same crystallization
transition, they are just rounded off by the finite size
and pushed to lower B compared to the HHA by the larger
number of states involved. In this region, the ED peak is
higher than that of the LG. This difference is not only due to
the KHAF having ground states that have no LG descrip-
tion [56], but also due to low-lying excitations. The latter
give rise to a second peak at 0.97Bsat that is present only in
the ED data.
To derive a tentative phase diagram, we show in Fig. 6(a)

the position Tmax of the low-T peak of CðTÞ vs B for N ¼
63 and N ¼ 72. We also show the HHA result Tc ¼
0.928ð1 − B=BsatÞ for N ¼ ∞ [13,14] and the LG curves
for N ¼ 63 and 72 (straight lines). The LG curves are very
close to tangential to the corresponding ED results just
below the saturation field, while the HHA yields a higher
transition temperature, as already noticed in the context of
Fig. 4(b). As B decreases, the ED curves bend down, and
when approaching the lower end point Bend of the plateau
(depicted by the vertical lines in Fig. 6) Tmax decreases and
we may expect that it vanishes near Bend, where the
magnon-crystal ground state disappears. For finite systems,
as approaching Bend the relevant peak in CðTÞ merges with
low-T finite-size peaks appearing just below Bend, this way
masking the true behavior expected for N → ∞.
We mention that the general shape of the transition curve

in Fig. 6(a) resembles the phase diagram of the magnon
crystallization of the fully frustrated bilayer AFM
[6,44,45]. Therefore, we may argue that the shape of this
curve is generic for two-dimensional spin models possess-
ing flatband multimagnon ground states.
The height of the maximum Cmax of CðTÞ (supposed to

become a power-law singularity for N → ∞) is shown in
Fig. 6(b) vs B for N ¼ 63 and N ¼ 72. The shape of these
curves is domelike with a maximum near the midpoint of
the plateau. The unusual behavior at B ¼ Bsat is discussed
in Ref. [26].

Discussion.—Our FTL data confirm the very existence
of a low-temperature magnon-crystal phase just below the
saturation field as conjectured by the HHA [13,14].
However, the B − T region where this phase exists is not
properly described by the HHA. Instead we elaborated a
LG description that complements our FTL investigations. It
is very accurate for B > Bsat and still yields a good
description just below Bsat. Our investigations therefore
provide guidance in which range of field and temperature a
magnon-crystal phase is to be expected.
Coming back to the “magnon crystallization” reported in

the experimental paper [1]: Here the authors interpret the
observed plateau states as crystallizations of emergent
magnons localized on the hexagon of the kagome lattice.
This concept coincides with the present study for the 7=9
plateau, but may differ for plateaus at smaller magnetiza-
tion, e.g., at 1=3 and 5=9. Although these lower plateaus
can be understood as magnon crystals formed at T ¼ 0, it
still has to be investigated whether the physical behavior for
T > 0 differs from the scenario discussed in this Letter,
since the huge set of flatband multimagnon states determin-
ing the low-T thermodynamics near Bsat is missing for
these plateaus.
As already discussed by the authors of Ref. [1] a real

compound always differs from the idealized theoretical
case, for instance, due to long-range dipolar or
Dzyaloshinskii-Moriya interactions. In the case of Cd-
kapellasite these seem to stabilize a phase at 10=12 of the
saturation magnetization. However, the structure of this
phase appears to be rather similar to that at 7=9, it therefore
served as a strong motivation to investigate the possibility

FIG. 5. Specific heat vs B at T=J ¼ 0.01 for the KHAF, HH
approximation, and LG with N ¼ 63 (solid curves) and the
thermodynamic limit of hard hexagons [13,14,65] (dashed curve).

(a)

(b)

FIG. 6. Phase diagram: (a) Position Tmax and (b) height Cmax of
the low-T maximum (cf. Fig. 3) in dependence on B for N ¼ 63
andN ¼ 72 for fields where the maximum can be unambiguously
detected. The vertical dashed lines mark the respective edges of
the magnetization plateau.
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of a magnon crystallization phase transition on very general
grounds (and with an idealized Hamiltonian). The effect of
certain anisotropic Hamiltonians on magnon crystal phases
confined to kagome stripes is extensively discussed in,
e.g., Ref. [40].
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romagnet: Algebraic paramagnetic liquid and finite-
temperature phase diagram, Sci. Bull. 63, 1545 (2018).

[39] K. Morita, T. Sugimoto, S. Sota, and T. Tohyama, Mag-
netization plateaus in the spin-1

2
antiferromagnetic Heisen-

berg model on a kagome-strip chain, Phys. Rev. B 97,
014412 (2018).

[40] S. Acevedo, C. A. Lamas, M. Arlego, and P. Pujol, Magnon
crystals and magnetic phases in a kagome-stripe antiferro-
magnet, Phys. Rev. B 100, 195145 (2019).

[41] A. V. Chubukov and D. I. Golosov, Quantum theory of an
antiferromagnet on a triangular lattice in a magnetic field, J.
Phys. Condens. Matter 3, 69 (1991).

[42] A. Honecker, A comparative study of the magnetization
process of two-dimensional antiferromagnets, J. Phys.
Condens. Matter 11, 4697 (1999).

[43] D. J. J. Farnell, R. Zinke, J. Schulenburg, and J. Richter,
High-order coupled cluster method study of frustrated and
unfrustrated quantum magnets in external magnetic fields, J.
Phys. Condens. Matter 21, 406002 (2009).

[44] F. Alet, K. Damle, and S. Pujari, Sign-Problem-Free
Monte Carlo Simulation of Certain Frustrated Quantum
Magnets, Phys. Rev. Lett. 117, 197203 (2016).

[45] O. Derzhko, T. Krokhmalskii, and J. Richter, Emergent
Ising degrees of freedom in frustrated two-leg ladder and
bilayer s ¼ 1

2
Heisenberg antiferromagnets, Phys. Rev. B 82,

214412 (2010).
[46] M. Maksymenko, A. Honecker, R. Moessner, J. Richter, and

O. Derzhko, Flat-Band Ferromagnetism as a Pauli-Correlated
Percolation Problem, Phys. Rev. Lett. 109, 096404 (2012).
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