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Realizing stable two-dimensional (2D) Dirac points against spin-orbit coupling (SOC) has attracted
much attention because it provides a platform to study the unique transport properties. In previous work,
Young and Kane [Phys. Rev. Lett. 115, 126803 (2015) proposed stable 2D Dirac points with SOC, in which
the Berry curvature and edge states vanish due to the coexistence of inversion and time-reversal
symmetries. Herein, using the tight-binding model and k · p effective Hamiltonian, we present that
2D Dirac points can survive in the presence of SOC without inversion symmetry. Such 2D Dirac
semimetals possess nonzero Berry curvature near the crossing nodes, and two edge states are terminated at
one pair of Dirac points. In addition, according to symmetry arguments and high-throughput first-principles
calculations, we identify a family of ideal 2D Dirac semimetals, which has nonzero Berry curvature in the
vicinity of Dirac points and visible edge states, thus facilitating the experimental observations. Our work
shows that 2D Dirac points can emerge without inversion symmetry, which not only enriches the
classification of 2D topological semimetals but also provides a promising avenue to observe exotic
transport phenomena beyond graphene, e.g., nonlinear Hall effect.
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Dirac semimetals with fourfold degenerate points
(i.e., Dirac nodes) near the Fermi level possess intriguing
physical properties, such as unique Fermi arcs, ultrahigh
mobility, giant magnetoresistance, and Klein tunneling
[1–3]. As the beginning of Dirac materials, graphene has
attracted significant attention, partially due to its Dirac
cones at the Fermi level and associated electronic properties
[4,5]. In the absence of spin-orbit coupling (SOC), such
massless Dirac cones are protected by inversion (P) and
time-reversal (T ) symmetries, where the spin rotation
symmetry is conserved. However, once the SOC is
included, the spin rotation symmetry is broken that drives
graphene into a quantum spin Hall insulator (QSHI) with a
pair of helical edge states inside the energy gap [6,7], as
shown in Fig. 1(a). Benefiting from the weak SOC,
graphene is regarded as a two-dimensional (2D) Dirac
semimetal, while other candidate materials [8–10] that are
composed of heavier elements turn into QSHIs with visible
energy gaps. As a result, the study of 2D Dirac semimetals
is limited to graphene. To further explore the unique
properties of 2D Dirac semimetals, it is essential to
investigate robust Dirac points against SOC.
Physically, nonsymmorphic symmetries can protect the

band crossings along high-symmetry lines or at high-
symmetry points in electronic band structures [11,12].

FIG. 1. The classification of crossing points in two dimensions
with SOC and T symmetry. Light yellow lines denote the
corresponding edge states. Red and black dots represent the
crossing points with opposite chirality. (a) Dirac points in
graphene, which are destroyed by SOC. (b) Nonsymmorphic
symmetry protected Weyl points against SOC. (c) PT symmetry-
involved Dirac points without edge states. (d) Dirac points
without P symmetry characterized by two edge states.
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In the presence of T symmetry and SOC, one nonsymmor-
phic symmetry in two dimensions, such as screw axis,
glide mirror line, or glide mirror plane, can lead to the
formation of 2D Weyl nodes [13,14] because nonsymmor-
phic operators have higher-dimensional projective represen-
tations. Analogous to the three-dimensional (3D) case, such
2DWeyl nodes are characterized by the local Chern number
or quantized Berry phase and finite edge states terminated at
the projections of two Weyl points in one-dimensional (1D)
Brillouin zone (BZ) [14–16], as shown in Fig. 1(b).When the
P symmetry is further introduced, the PT symmetry
enforces one pair of Weyl points with opposite chirality to
merge at the time-reversal invariant momentum (TRIM)
points, forming robust Dirac points against SOC [14].
However, in such 2D Dirac semimetals, the Berry curvature
must disappear throughout the whole BZ under the PT
symmetry [14,17].Meanwhile, the edge states also vanish, as
shown in Fig. 1(c), and they can appear again if the Dirac
point is split into one pair ofWeyl nodes by breaking eitherP
or T symmetry. It is well known that Berry curvature is
closely related to many physical phenomena, and nontrivial
edge states exhibit unique electronic transport properties
[18–23]. Hence, it is of particular importance to construct
stable 2D Dirac points without P symmetry.
It is generally believed that the crossing of two Kramers

degenerate bands forms the fourfold degenerate Dirac
point. In other words, the P and T symmetries should
be preserved to obtain the stable Dirac point. However, as
discussed above, to realize stable Dirac points against SOC
with nonzero local Berry curvature, it is necessary to break
P or T symmetry. Once P or T symmetry is broken, other
symmetries should be introduced to guarantee the fourfold
degenerate band crossing. Therefore, it is natural to recall
the fact that nonsymmorphic symmetries can bring extra
degeneracies and therefore give rise to symmetry-protected
band crossings in two dimensions.
Here, we theoretically propose robust 2D Dirac points

against SOC in layer group Pb2b (No. 30), which are
protected by the combination of T and glide mirror
symmetries. Different from PT symmetry-involved 2D
Dirac points [14], the 2D Dirac points without P symmetry
are characterized by nonzero Berry curvature in the vicinity
of Dirac points, and two edge states connect one pair of
Dirac points [see Fig. 1(d)]. Furthermore, a family of ideal
candidates is identified to realize such robust 2D Dirac
points.
First, we construct a two-site tight-binding (TB) model

to investigate the Dirac points in two dimensions. As shown
in Fig. 2(a), we consider a 2D lattice that consists of two
sites A and B per unit cell. The corresponding BZ is shown
in Fig. 2(b). The lattice contains two nonsymmorphic (glide
mirror) symmetries: M̃x ¼ fMxjτg and M̃z ¼ fMzjτg,
whereMx andMz are the mirror reflection of the yz and xy
planes, respectively, and τ ¼ ð0; 1

2
; 0Þ is half translation of

lattice along the y axis. Note that here the T symmetry

preserves while the P symmetry is broken. We assume that
each site has an s orbital with two spin states, so the system
has four basis sets jA;↑i, jA;↓i, jB;↑i, jB;↓i. The
symmetry operators of this lattice can be represented as

M̃x ¼ −iτxσx; M̃z ¼ −iτxσz; T ¼ −iσyK; ð1Þ

where both τi and σi (i ¼ x, y, z) are Pauli matrices that
describe the degrees of freedom for lattice and spin,
respectively, and K is the complex conjugate operator.
Constrained by the above symmetries, the 4 × 4
Hamiltonian is given by

H¼ t1 coskxτoþ t2 coskyτo

þ t3 cos

�
ky
2

�
τxþ tso1 sinkxτoσz

þ t0so1 sinkxτzσxþ tso2 sinkyτzσyþ tso3 cos
�
ky
2

�
τyσy; ð2Þ

where ti, tsoi (i ¼ 1, 2, 3), and t0so1 are hopping parameters,
and more details are provided in Fig. 2(a). A set of suitable
values (i.e., t1 ¼ −0.06, t2 ¼ −0.1, t3 ¼ −1.8, tso1 ¼ −0.3,
t0so1 ¼ −0.2, tso2 ¼ −0.4, and tso3 ¼ −0.5) are chosen by
fitting to first-principles calculations.
Based on the TB Hamiltonian in Eq. (2), we calculate the

band structures without and with SOC, as shown in

FIG. 2. (a) 2D lattice with two sites A and B, which are denoted
by white and black spheres, respectively. The dashed rectangular
area represents the unit cell, and the blue curves mark with the
hopping parameters ti, tsoi (i ¼ 1, 2, 3), and t0so1 represent the
introduced hopping between two atoms. (b) The corresponding
2D BZ and the projected 1D BZ along the y direction, where the
high-symmetry path that hosts the nodal line without SOC is
marked in red, and the positions of Dirac points with SOC are
denoted by black dots. Band structures without (c) and
with (d) SOC.
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Figs. 2(c) and 2(d), respectively. In the absence of SOC, the
energy bands host a doubly degenerate (fourfold degenerate
if the spin is considered) nodal line along the high-
symmetry path Y −M. Such a nodal line is protected by
the T symmetry (with T 2 ¼ þ1) and the glide mirror line
M̃x because their combination has the product ðM̃xT Þ2 ¼
−1 that can give rise to the Kramers-like double degen-
eracy. The position of this nodal line is labeled by red in the
BZ, as shown in Fig. 2(b).
When the SOC is included, the T symmetry obeys

T 2 ¼ −1. Combined with the M̃x symmetry, we can
obtain ðM̃xT Þ2 ¼ −1 which leads to a double degeneracy
along the Y-M path. Therefore, as shown in Fig. 2(d), the
fourfold degenerate nodal line without SOC is split into two
doubly degenerate bands along the Y-M path. Since each
momentum k is invariant under M̃z, the Bloch states juki
can be chosen as the eigenstates of M̃zjuki ¼ gjuki, where
g have the values of �ieiðky=2Þ and are labeled at the TRIM
points in Fig. 3(a). According to Eq. (1), M̃x and M̃z
anticommute with each other. Therefore, the eigenstates
juki and M̃xjuki have the opposite M̃z eigenvalues �1,
thus giving rise to the doubly degenerate states along the
Γ − Y (or X −M) line. Next, we provide a symmetry
analysis for these fourfold degenerate points. For the TRIM
points Y and M, the eigenstates juki and M̃xjuki always
accompany with their Kramers partners T juki and
T M̃xjuki [see details in the Supplemental Material
(SM) [24] ], guaranteeing the fourfold degenerate Dirac
points [see Fig. 2(d)]. In short, the fourfold degenerate

states are split into two doubly degenerate states along the
high-symmetry lines and further degenerate into four
nondegenerate states at generic points, forming the 2D
Dirac points at the Y and M points. To gain an intuitive
understanding of the Dirac points, we plot the 3D repre-
sentation of the band structure around the M point, as
shown in Fig. 3(b).
To further verify these 2D Dirac points, we construct an

effective four-band model at the Y point using four basis
sets juki, T M̃xjuki, T juki, and M̃xjuki. Based on the
generating operators M̃x, M̃z, and T , we can obtain a
generic effective Hamiltonian,

HðkÞ ¼ g1

�
k · μ 0

0 −k · μ
�
þ TðkÞ; ð3Þ

where TðkÞ ¼ −m1kxμ0μz −m2kyμzμz is the distortion
term. Here g1, m1, and m2 are nonzero real constants,
and μi are Pauli matrices (see more details in the SM [24]).
Clearly, it is an exact Dirac equation modified by a
distortion term TðkÞ, which can be considered as the direct
sum of two Weyl equations with opposite chirality, further
confirming the 2D Dirac points at Y. This effective model is
also suitable for elaborating the M point because the Y and
M points share the same little group.
In our model, the P symmetry is broken, and the Berry

curvature ΩnðkÞ is therefore locally nonzero and is given
by ΩnðkÞ ¼ ih∇kunðkÞj × j∇kunðkÞi, where junðkÞi is
the Bloch wave function of the nth band. In two dimen-
sions, the Berry curvature has the expression

ΩnðkÞ ¼ −
X
n0≠n

2Im
hunðkÞjνxjun0 ðkÞihu0nðkÞjνyjunðkÞi

ðεn0k − εnkÞ2
;

ð4Þ
where να ¼ ð1=ℏÞð∂H=∂kαÞ (α ¼ x; y) are velocity matri-
ces and εnk are the eigenvalues of the nth band. Based on
Eq. (4), the Berry curvature for the TB model is calculated,
and it exhibits a clover-type pattern, as shown in Fig. 3(c).
The T symmetry gives

Ωnðkx; kyÞ ¼ −Ωnð−kx;−kyÞ: ð5Þ

Under the M̃x symmetry, we can obtain

Ωnðkx; kyÞ ¼ −Ωnð−kx; kyÞ: ð6Þ

The combination operator M̃xT requires

Ωnðkx; kyÞ ¼ Ωnðkx;−kyÞ: ð7Þ

Clearly, under the constraint of the T symmetry, the Berry
curvature is an odd function of kx and ky. Meanwhile, the
Berry curvature is odd with respect to kx due to the M̃x

symmetry and is even along ky constrained by the M̃xT

FIG. 3. (a) The band structure with SOC along high-symmetry
Γ −M − X lines, where �1 and �i are the eigenvalues of M̃z.
(b) 3D representation of the band structure around the M point.
(c) Berry curvature distribution in the BZ. (d) The edge states in a
relative scale, which are obtained on one edge of a semi-infinite
ribbon along the x direction.
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symmetry. The pattern of the calculated Berry curvature is
in excellent agreement with the symmetry constraints, as
shown in Fig. 3(c). It exhibits nonzero Berry curvature
distribution with large anisotropy in the vicinity of Dirac
points. The Berry curvature is well separated in the BZ,
which may favor the large nonlinear Hall effect [37,38].
Besides, the inequivalent valleys at the Y andM points with
fourfold degeneracy offer a unique platform to investigate
valleytronics in topological semimetals beyond graphene.
Such nonzero local Berry curvature can lead to nontrivial

edge states. Employing the iterative Green’s function
method [33,34], we calculate the local density of states
(LDOS) on one edge of a semi-infinite nanoribbon along
the x direction. The edge states in a relative scale are shown in
Fig. 3(d). It can be clearly seen that two visible edge states
spanning the whole 1D BZ connect one pair of projected
Dirac points, characterizing the 2D Dirac points without P
symmetry. This is completely different fromWeyl points and
PT symmetry-involved Dirac points. It is worth noting that
the edge states disappear along the y direction because the
opposite Berry curvatures contributed from kx and −kx
cancel each other out when it projects along the y direction.
Such direction-dependent edge states have potential appli-
cations in anisotropic electronic devices.
In addition to the above discussions based on the TB

model, we identify a family of candidates as ideal 2D Dirac
semimetals using first-principles calculations. Here, we
only focus on the monolayer SbSSn, and other candidates
are summarized in the SM [24]. The monolayer SbSSn
contains three atomic layers, where two slightly puckered S
and Sn layers are well separated by the middle Sb atomic
layer, as shown in Fig. 4(a). The optimized lattice param-
eters and atomic positions are given in the SM [24]. To
examine the dynamical stability, we calculate the phonon
spectra (see the SM [24]) of SbSSn. There is no imaginary
frequency found in the BZ, implying its dynamical stability.
The electronic band structure of SbSSn with SOC is

plotted in Fig. 4(b). Clearly, there are two inequivalent
fourfold degenerate crossing points located at Y and M,
forming electron and hole valleys around the Fermi level.
The little groups of the crossing points at the Y and M
points have only one four-dimensional (4D) irreducible
representation [39], guaranteeing the fourfold degenerate
2D Dirac points. Moving along the high-symmetry lines,
the 4D irreducible representation degenerates into two
dimensions and is further reduced to one dimension at
generic points, which shows excellent consistency with the
above symmetry arguments. The Berry curvature distribu-
tion and LDOS projected on one edge of the semi-infinite
ribbon along the x direction are shown in Figs. 4(c)
and 4(d), respectively. As expected, the Berry curvature
pattern obeys the symmetry conditions, and two edge
states connect one pair of Dirac points spanning over the
whole BZ.

In conclusion, using symmetry arguments, we present
that 2D Dirac semimetals can exist without P symmetry.
These Dirac points are protected by T symmetry, glide
mirror plane M̃z, and glide mirror line M̃x. Different from
PT symmetry-involved 2D Dirac points, our proposed
model without P symmetry features nonzero Berry curva-
ture in the vicinity of the Dirac points. It also hosts two
edge states terminated at the projections of two Dirac points
spanning the whole 1D BZ. Furthermore, using high-
throughput first-principles calculations, we find a family
of 2D Dirac candidates, which has nonzero Berry curvature
near the crossing points and visible edge states, making
their exotic transport properties easy to be observed in
experiments. Our findings show that 2D Dirac semimetals
without P symmetry exhibit a wide range of physical
properties different from graphene, e.g., nonlinear Hall
effect, and have potential applications in low-dimensional
quantum transport devices.
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FIG. 4. (a) Top (upper panel) and side (lower panel) views of
monolayer SbSSn, and the unit cell is marked by the black
rectangle. (b) Calculated band structure of SbSSn with SOC.
(c) Berry curvature distribution in the BZ. (d) The edge states in a
relative scale, which are obtained from one edge of a semi-infinite
ribbon along the x direction.
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