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Ions in ionic liquids and concentrated electrolytes reside in a crowded, strongly interacting environment,
leading to the formation of discrete layers of charges at interfaces and spin-glass structure in the bulk. Here,
we propose a simple theory that captures the coupling between steric and electrostatic forces in ionic
liquids. The theory predicts the formation of discrete layers of charge at charged interfaces. Further from
the interface, or at low polarization of the electrode, the model outputs slowly decaying oscillations in the
charge density with a wavelength of a single ion diameter, as shown by analysis of the gradient expansion.
The gradient expansion suggests a new structure for partial differential equations describing the
electrostatic potential at charged interfaces. We find quantitative agreement between the theory and
molecular simulations in the differential capacitance and concentration profiles.
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Introduction.—The spatial organization of ions in con-
centrated electrolytes leads to strong density and charge
oscillations in the electric double layer (EDL) at charged
interfaces [1–3]. When the concentration is beyond the
dilute limit of the established Poisson-Boltzmann (PB)
theory, one must account for correlation and packing
effects, particularly as the Debye length approaches the
size of a single ion [4]. Methods to correct the PB equations
include the hypernetted-chain equation [5–10], mean-
spherical approximation [11,12], density functional theory
[13–21], and dressed-ion theory [22,23]. While many
methods can accurately predict EDL profiles, they often
lack the simplicity and physical transparency of the PB
theory which they seek to correct [4].
More recently, with the rediscovery of room temperature

ionic liquids (RTILs) [24,25] and their applications to
energy storage devices [1,26], the task of understanding
the interfacial structure in concentrated electrolytes has
surged [27]. Describing the EDL of RTILs is particularly
difficult because of the competition between strong steric
and electrostatic forces [1], as illustrated in Fig. 1, and the
fact that the expected Debye screening length is unphysi-
cally smaller than the diameter of an ion. In fact, the coupling
of density and charge has been described as the ground state
for a spin-glass Hamiltonian for ionic nearest neighbors
(given their positions) [28], which is extremely difficult to
describe with continuum equations. The interplay between
ion position and charge order gives rise to the well-known

crossover from the overscreening regime (where decaying
oscillations of charge density occur) to the crowding regime
(where dense layers of countercharge accumulate first at the
interface) [29–32].

FIG. 1. (a) Illustration of a concentrated, crowded electrolyte
forming structured double layers at high surface charge density.
The cations are red, the anions are blue, and the surface atoms are
shown in gray, with negative charge on the left surface and positive
charge on the right surface. (b) Corresponding concentration
profile for a model room temperature ionic liquid of equally
sized, oppositely charged hard spheres (c0 ¼ 5 M, d ¼ 0.5 nm,
ϵr ¼ 10, qs ¼ 120 μC=cm2, T ¼ 300 K; for notations see text).
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Perhaps one of the most popular descriptions of the
overscreening versus crowding problem [29,30] in RTILs is
the Bazant-Storey-Kornyshev (BSK) theory [31]. There, a
higher order gradient term in electrostatic potential was
proposed, in addition to the commonly used lattice-gas
excluded-volume excess chemical potential [33,34]. The
BSK theory has been shown also to describe well electro-
static correlations in dilute electrolytes and counterion only
systems [35,36]. In the concentrated limit of RTILs,
however, the BSK theory has some notable limitations:
The screening is always short-ranged; the period of the
oscillation is not necessarily the size of an ion, and the
number and extent of oscillations is significantly under-
estimated. More recent work has suggested that the over-
screening structure is a similar concept to the finite size [37]
and orientation of ionic aggregates [38] near charged
interfaces.
In this Letter, we propose a free-energy functional to

describe the coupling between steric and electrostatic
forces, and, therefore, capture the “spin-glass” nature of
charge-mass correlations in RTILs. The theory predicts
discrete layering, extended overscreening with a longer
screening length than the size of an ion with an oscillation
period of one ion diameter, and quantitative agreement
with simulated differential capacitance. Our free-energy
functional is a new hybrid approach using the weighted
density approximation to describe the finite size of ions in
both their electrostatic and steric interactions. Without
fitting parameters, the theory has predictive capabilities,
and it has a similar simplicity to the other modified-
Poisson-Boltzmann approaches. While we explore the
equilibrium properties at interfaces, the presented formu-
lation could be extended to RTILs out of equilibrium,
phase field crystal models, or systems including a struc-
tured solvent.
Theory.—We modify the electrostatic and hard sphere

packing free energies by representing them in terms of
weighted densities of local concentrations, similar to
weighted-density approximations including fundamental
measure theory [39–41]. We rationalize these choices by
treating the ions as hard, conducting, charged spheres of
finite size, each one a source of pseudopotential:

GiðrÞ ¼
� zie

4πϵr r ≥ R
ϕ0 r < R;

ð1Þ

where ϕ0 is a constant within a given ion, ϵ is the
permittivity surrounding the ion (assumed constant in this
work as an average effective background value), zie is the
charge of the ion, R its radius, and r is the distance from the
center of an ion. The physical basis for the Ashcroft
pseudopotential character [42] of the Green’s function is
that the electrostatic potential within a finite-sized ion is
effectively overwhelmed by the hard sphere potential
within the ion. Therefore, the electrostatic potential is an

undefined constant within the sphere and can decay as a
1=r potential only beyond the ionic radius. The linear
integro-differential equation corresponding to this Green’s
function is

ϵ∇2ϕ ¼ −ρ̄eðrÞ ¼ −
Z

dr0ρeðrÞwsðr − r0Þ;

wsðr − r0Þ ¼ 1

4πR2
δðR − jr − r0jÞ; ð2Þ

which is the key modified mean-field Poisson equation in
our work. Here ϕ is the electrostatic potential, ρe ¼P

i zieci is the charge density of ionic centers, ci is the
number density of the centers of species i, ρ̄e is the
weighted charge density (calculated for the smeared charge
of an ion over its surface), and ws is the weighting function.
Integrating contributions of the smeared charges results in
the “actual” charge density which resides in the Poisson
equation. While our weight function for the charge density
resembles the choice of charge form factor in Ref. [37] for
ionic screening in the bulk, we construct a mean-field
equation that gives the ionic density at a flat interface at
high surface charge density.
From the above modified Poisson equation, the electro-

static free-energy density becomes

F el½ρ̄e;ϕ� ¼
Z

dr

�
−
ϵ

2
ð∇ϕÞ2 þ ρ̄eϕ

�
: ð3Þ

The chemical part of the free energy contains an ideal
entropic contribution: F id½fciðrÞg� ¼

P
i kBT

R
drciðrÞ×

fln½Λ3ciðrÞ� − 1g, where kBT is thermal energy and Λ is
the thermal de Broglie wavelength [39]. There is also
an excess contribution from crowding of the finite-sized
ions. The Carnahan-Starling equation of state accurately
describes the properties of hard sphere liquids. Here, we
adapt it and assume that the local excess free energy
depends on volumetrically weighted densities, similar to
fundamental measure theory [39,40],

F ex½c̄iðrÞ� ¼
kBT
v

Z
dr

�
1

1 − p̄
− 3p̄þ 1

ð1 − p̄Þ2
�
; ð4Þ

where p̄ ¼ P
i vc̄i is theweighted volumetric filling fraction

and v ¼ 4πR3=3 the volume of an ion. The weighted
densities are defined by

c̄iðrÞ ¼
Z

dr0ciðrÞwvðr − r0Þ;

wvðr − r0Þ ¼ 1

v
ΘðR − jr − r0jÞ; ð5Þ

where the scalar valued weighting function has units of
inverse volume, and the function Θ represents a Heaviside
step function. Therefore, the densities with which the
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mean-field electrostatic interaction or hard sphere inter-
action occurs are computed with a quantized volume of one
ion. Physically, the free energy is infinite as the volumetric-
weighted filling fraction goes to one [43]. For the purposes
of this study, the electrostatic charge density will be
homogenized on a surface of an ionic sphere, whereas
the volumetric packing fraction will be homogenized over a
volume of an ionic sphere.
Minimizing the free-energy functional, we arrive at a

modified PB equation, Eq. (2), where the distribution of ion
(center) densities is determined by

ci ¼ ci;0 expð−ziβeϕ̄ − βμ̄exi þ βμexi;bulkÞ; ð6Þ

with β as the inverse thermal energy, ϕ̄ ¼ ϕ � ws and μ̄exi ¼
μexi � wv (with � denoting convolution), and excess chemical
potential defined as βμexi ¼ð8p̄−9p̄2þ3p̄3Þ=ð1−p̄Þ3 [44].
Results and discussion.—We solve the above coupled

integro-differential equations (2) and (6) at a flat electrode,
with surface charge density qs at x ¼ 0. In this case, the
standard boundary condition for the potential is applied,
n̂ · ϵ∇ϕjs ¼ −qs. The local ionic densities (of centers) ci
and charge density (of ionic centers) ρe are assumed to be
zero within one radius from the surface, from x ¼ 0 to
x ¼ R, due to hard sphere exclusion. We solve for the
area averaged density, and we therefore reduce all equa-
tions to be dependent on one coordinate, x. Numerically,
we discretize the equations using a simple finite difference
approach, similar to how the standard PB equations could
be solved. More details on the numerics are provided in the
Supplemental Material (SM) [47].
For further intuition, we analyze a simple gradient

expansion of the weighting functions that turns them into
operators: wj ¼ 1þ lj

2∇2, where lj is given by ls ¼
d=

ffiffiffiffiffi
24

p
for ws and lv ¼ d=

ffiffiffiffiffi
40

p
for wv, as derived in

the SM [47]. The corresponding differential form of the
free-energy density is given by

F el½ρ̄e;ϕ� ¼
Z

dr

�
−
ϵ

2
ð∇ϕÞ2þρeϕ−ls

2∇ρe ·∇ϕ

�
: ð7Þ

The leading order term in the expansion corresponds to a
dipole density interacting with an electric field,
interpretable as ionic pairs of effective volumetric dipole
moment ls

2∇ρe, an effective polarization vector formed by
gradients in the local charge density ρe [38]. Note that since
the order of the differential form of Eq. (2) increases,
we need an additional boundary condition. We assume
this to be n · ∇ρejs ¼ 0 in order to satisfy electro-
neutrality in the differential equation, namely thatR
drρeðrÞ ¼ −

R
drsqsðrsÞ.

The above gradient expansion does not reproduce the
profile at the initial contact of the ionic liquid with the
surface. In particular, the differential form cannot capture
the discontinuous contact point at x ¼ R, and so the

solutions are shifted by one ionic radius. Even so, the
gradient expansion is valid farther from the surface and is
useful for deriving analytical approximations for the theory.
Furthermore, the differential form may be easier to apply to
problems in diverse applications such as electrokinetics
[53], colloidal interactions [36], or electrochemical storage
[54,55] than the full integro-differential theory [48]. As an
example, we will first analyze the gradient expansion of the
continuum theory in terms of its limiting linear response
behavior, which asymptotically matches the behavior of the
full integral equation far from the interface. Further
comparisons are included in the SM [47].

FIG. 2. Layering of ions in a concentrated electrolyte or ionic
liquid. (a) The overscreening “signature”: the charge density of
ions near a positively charged electrode scaled to the surface
charge density on the electrode. The inset shows the concen-
tration profile for each ion at qs ¼ 10 μC=cm2, with oscillations
in both the sum of concentrations and in the difference in
concentrations. (b) The normalized cumulative charge density
as a function of the distance from the interface, with inset
showing the extent of screening in the first layer of charge f1, as
explained in the text. Overscreening occurs when the net charge
in the first layer is larger than the charge on the electrode.
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In linear response, the equation for the potential is

λ2D∇2ϕ − ð1þ l2
s∇2Þ2ϕ ¼ 0; ð8Þ

where λD is the Debye length. While the equation is fourth
order, similar to the linearized BSK equation, it has different
decaying modes due to an additional second order term. The
eigenvalues of the above differential equation, denoted by
the inverse decay length κs ¼ 1=λs, have the form:

κsλD ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðls=λDÞ2

p
2ðls=λDÞ2

: ð9Þ

Note that the form of Eq. (8) bears some resemblance to
the Swift-Hohenberg equation [56], commonly used to
describe pattern formation and other phase-field crystal
models [57]; here electrostatics and finite size drive the
pattern formation. When ls=λD > 1=2, oscillations appear
in the solution, and in the limit of ls=λD ≫ 1=2, the
screening length takes the form κsλD ¼ λ2D=l

2
s � iλD=ls.

At high concentration (small λD), the ions will therefore form
charge density layers on the scale of the ionic size, with
period of 1.28d, similar to the result from simulations. In
strongly correlated regimes, the real part of the screening
length will scale as ln ½Reðλs=λDÞ� ¼ 2 ln ðd=λDÞ þ const,
increasing with concentration. This result is qualitatively in
agreement with surface force experiments [58,59], but they
find a scaling factor 3 rather than 2. They also measure
monotonic decay, and not decaying oscillations in the
overscreening tail as predicted by the theory. Note that
the mass density oscillations also have a characteristic decay
length, but it is decoupled from the electrostatic potential at

linear response for ions of the same size, as discussed in the
SM [47]. The discrepancy in exponents may be due to the
symmetric size of ions in the analysis here, which limits
the coupling.
Next, we compute the ion concentration and density

profiles as a function of charge density for some model
parameters (c0 ¼ 5 M, d ¼ 0.5 nm, ϵr ¼ 10, T ¼ 300 K),
shown in Fig. 2. Note the parameters shown here are

FIG. 3. Differential capacitance of the EDL as a function of the
applied voltage, for the weighted density approximation (WDA)
in Eq. (2), simulations, and the local density approximation
(LDA) formula [33], given in the SM [47]. Inset: The charge
density in the double layer as a function of the applied voltage.
The parameters are identical to Fig. 2.

FIG. 4. Comparison of theory (a),(c) and simulation (b),(d)
concentration profiles for two different charge densities: qs ¼
10 μC=cm2 and qs ¼ 120 μC=cm2. The electrolyte has the same
parameters as in Figs. 2 and 3 (Very large, exaggerated values of
surface charge of 120 μC=cm2 are chosen for revealing the onset
of crowding in the layers closest to the interface).
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meant to be representative of RTILs, but the simplifying
assumptions of similarly sized spherical cations and
anions prevent a direct comparison with experimental
results for asymmetric ionic liquids of complicated
shape [60]. We also present the cumulative screening
charge, defined as fðxÞ ¼ −

R
x
0 ρeðx0Þdx0=qs. At low sur-

face charge density, the first layer of charge has about 57%
more counter charge than the surface charge. Subsequent
layers of alternating charge are formed. At low surface
charge density, the ion concentrations themselves are
affected by overall structuring of the fluid (cþ þ c−)
due to packing at the interface. At higher charge density,
the inhibitive force of packing at the interface decreases the
extent of overscreening in the first layer f1. Eventually, as
the charge density exceeds the total amount of charge that
can be stored in a single layer of ions, a secondary layer is
formed. When this occurs, the extent of overscreening
becomes determined by the renormalized charge on the
interface. The chosen simulation parameters are in the
strongly oscillating regime ls=λD ≈ 2.1, meaning that
the far range screening tail has approximate wavelength
of one ionic diameter and long decay length.
It is instructive to compare the predictions of the

theory to MD simulations of a Lennard-Jones electrolyte
with the same parameters. The differential capacitance,
C ¼ jdqs=dϕ0j, is evaluated in Fig. 3 as a function of the
potential drop across the double layer, ϕ0. Compared to
simulations, the weighted density theory captures the low
capacitance at zero charge and further decrease of capaci-
tance at large voltages. The theory presented here agrees
much better with simulations compared to the local density
approximation formula [33,61]; the improvements in the
crowding regime, at large voltages, are due to use of the
weighted Carnahan-Starling approximation rather than
the simple local density approximation formula, both
obeying, however, the V−1=2 limiting law [33,48]. In
Fig. 4, the layering structure is compared between theory
and simulation for low and high charge densities. The
theory is able to qualitatively match the structuring in the
simulations, with charge density oscillations and eventually
layers of the same charge at high charge density. Even so,
the wavelength in the charge density oscillations are off by
about a factor of 1.3. Such a discrepancy could be captured
by changing the form of ws to extend beyond the size of the
ionic radius, but modifications to ws are not considered in
this work [62].
The developed continuum theory captures the key points

in the interplay between overscreening and crowding in
EDL of ionic liquids, including (1) decaying charge density
profiles near the electrode and the overscreening effect
as a consequence of molecular layering, (2) the onset of
crowding through the shift of the overscreening to a third,
and then subsequently further layers, and (3) the emergence
of the long-range screening tail in ultraconcentrated ionic
systems [63].
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