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Modern experimental platforms such as superconducting circuit arrays call for the exploration of bosonic
tight-binding models in unconventional situations with no counterpart in real materials. Here we investigate
one such situation in which excitations are driven and damped by pairs, leading to pattern formation and
exotic bosonic states emerging from a nonequilibrium quantum many-body system. Focusing on a two-
dimensional driven-dissipative Bose-Hubbard model, we find that its steady states are characterized by the
condensation of bosons around momenta lying on a “Bose surface,” a bosonic analog of the Fermi surface
in solid-state systems. The interplay between instabilities generated by the driving, the nonlinear dissipative
mode coupling, and the underlying lattice effect allows the system to equilibrate into an exotic superfluid
state of bosons condensed on a closed ring in momentum space instead of discrete points. Such an
unconventional state with a spatially uniform density distribution goes beyond the traditional scope of
pattern formation and thus has no counterpart in the classical literature. In addition, it is a state connected to
several open problems in modern condensed-matter physics. Here we provide the means to stabilize it,
opening the way to its experimental study. Moreover, we also provide a concrete experimental
implementation of our model in currently available superconducting circuit arrays. We also investigate
the relaxation spectrum around the condensate, which shows a characteristic purely diffusive behavior.
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Introduction.—The scope of nonequilibrium physics is
immense since the universe as a whole is a nonequilibrium
system. A fundamental question in this context is under-
standing how the observed richness of spatiotemporal
patterns spontaneously emerges from nothing [1].
In contrast to pattern formation within thermodynamic
equilibrium, rooted in the minimization of (free) energy,
patterns emerging in nonequilibrium systems can only be
understood within a dynamical framework, even if the
patterns of interest are time independent. More often than
not, when a system is driven far from equilibrium, spatially
uniform structures become unstable toward the growth of
small perturbations, which leads to dynamics that amplify
fluctuations and increase complexity. Late-time dynamics
is dominated by the fastest-growing fluctuating modes,
whose characteristic length and timescales determine the
resulting spatiotemporal patterns, eventually stabilized by
nonlinear and dissipative mechanisms [2]. In such a
dynamical framework, dynamical instabilities and non-
linear mode coupling mechanisms are crucial for pattern
formation [3].
Nonequilibrium pattern formation has been intensively

studied in classical systems ranging from hydro-
dynamics [4] and cosmology [5] to biochemistry [6] and
optics [7–10]. A profound question, then, is how to

generalize these ideas to nonequilibrium quantum systems
where the interplay between the intrinsic quantum fluctua-
tions and external nonequilibrium conditions might give
rise to richer phenomena than what is expected on the
basis of these effects separately [11–13]. The situation is
further complicated and potentially richer when the quan-
tum system is an interacting many-body system, opening
avenues for observing exotic quantum states of matter that
are absent in either equilibrium quantum systems or in
nonequilibrium classical systems. Recently, significant
experimental progress has been made in Bose-Einstein
condensates (BECs), where stripes, squares, hexagons, and
other types of patterns have been observed in exciton-
polaritons [14,15] and ultracold atoms [16–24]. But besides
these conventional patterns, it is even more interesting to
investigate exotic nonequilibrium states inspired by the
intrinsic quantum nature of these systems that have not
been discussed in their classical counterparts.
In this Letter, we study pattern formation and exotic

order in the nonequilibrium steady states of a pair-
driven-dissipative Bose-Hubbard (BH) model, for which
we propose a concrete implementation based on current
superconducting circuit arrays. In contrast to the continu-
ous systems studied previously [14,15], here we investigate
a tight-binding model defined on a two-dimensional (2D)
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square lattice, where many-body effects are known to play a
crucial role in determining equilibrium phase diagrams
[25]. To drive the system out of equilibrium, we consider
local pair creation and annihilation terms (pair driving) that
induce spatially dependent instabilities determined by
the fastest growing modes, which, as we show, lie on
the Bosonic analog of a Fermi surface. We include the
nonlinear dissipation that unavoidably accompanies pair
driving and serves to stabilize the system. We consider two
distinct situations. First, we consider a situation in which
the Bose surface is a generic closed curve, leading to
unconventional superfluid states forming striped density
patterns. Then, we consider a so-called nested surface for
which we obtained an exotic state with bosons condensed
on a closed ring instead of discrete points in the Brillouin
zone, leading to a spatially uniform density but with
a nontrivial phase distribution. In equilibrium physics,
similar Bose-liquid states have been conjectured to play
an important role in frustrated quantum magnetism [26],
high-Tc superconductors [27], and cold atoms with
spin-orbit coupling [28,29]. We also discuss the relaxation
spectrum of fluctuations around the generic condensate,
showing that it is dominated by a purely diffusive mode.
Model and method.—We study a 2D BH model in a

square lattice with on-site pair creation or annihilation,
governed by the Hamiltonian

Ĥ
ℏ
¼ −J

X

hiji
b̂†i b̂j þ

1

2

X

i

�
U
2
b̂†2i b̂2i − νn̂i þ

Δ
2
b̂2i

�
þ H:c:;

ð1Þ

where b̂i annihilates a boson at site i and n̂i ¼ b̂†i b̂i is the
corresponding number operator. J is the single-particle
hopping rate between adjacent lattice sites hiji. ν resembles
the chemical potential of equilibrium systems, but in our
nonequilibrium setup it can be tuned from positive to
negative [30]. Δ is the pair-driving rate, which we take as
positive without loss of generality. In a conventional BH
model,U is the interaction rate, but in our dissipative model
it will adopt a more general meaning that we discuss later.
To get a better understanding of the effect of pair driving,

we focus first on the U ¼ 0 case. The Hamiltonian takes a
quadratic form with translational invariance, which is
written in momentum space as

Ĥ
ℏ
¼

X

k

ðεk − νÞb̂†kb̂k þ
Δ
2
ðb̂†kb̂†−k þ b̂kb̂−kÞ ð2Þ

where the sum extends over momenta in the first Brillouin
zone and b̂k ¼ ð1=LÞPi e

−ik·ib̂i, for an L × L lattice with
dispersion εk ¼ −2Jðcos kx þ cos kyÞ. Equation (2) shows
that each pair of �k modes with opposite momentum
evolves independently with a Hamiltonian reminiscent to
that of a detuned parametric amplifier [31,32]. The

corresponding physics is easily understood by analyzing
the amplitudes ψk ¼ hb̂ki, with equations of motion

i
d
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ψ�
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�
¼

�
εk − ν Δ
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��
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ψ�
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: ð3Þ

Their general solution can be written as
ψkðtÞ ¼ eiλktuk þ e−iλktvk, where uk and vk are time-
independent coefficients determined by the initial condi-
tions and λ2k ¼ ðεk − νÞ2 − Δ2. Those k modes satisfying
jεk − νj ≥ Δ evolve in a stable fashion. In contrast, the
modes with jεk − νj < Δ are dynamically unstable and
diverge exponentially with time. The divergence rate
Imfλkg is maximized for the k modes satisfying
εk − ν ¼ 0, which for fermionic models corresponds to
the Fermi surface, which we thus dub “Bose surface” here.
The instability at U ¼ 0 indicates that the density of

bosons will increase indefinitely. In a real system, however,
dissipation and nonlinear effects (interactions) make the
density saturate, eventually halting the system into a steady
state. In particular, the pair driving that we consider here
will be accompanied by a two-boson (nonlinear) loss in real
implementations, as we highlight in [30]. Mathematically,
this has to be treated through a master equation for the
mixed state of the system. However, under the assumption
that superfluid order is present, we can simplify the
problem by invoking the mean-field or coherent-state
approximation. As detailed in [30], on the one hand this
is equivalent to adding an imaginary part to the interaction,
that is, U ¼ g − iγ with g and γ real and positive, which
makes the Hamiltonian Eq. (1) non-Hermitian, becoming
then an effective description of the open system. On the
other hand, the coherent-state approximation amounts to
replacing the bosonic operators by their expectation value
ψ i ¼ hb̂ii in the Heisenberg equations. Since our model is
defined on a lattice, this leads to a finite-differences version
of the Gross-Pitaevskii (GP) equation:

i
dψ i

dt
¼ −J

X

j

ψ j − νψ i þ ðg − iγÞjψ ij2ψ i þ Δψ�
i ; ð4Þ

where the summation is restricted to the site j adjacent to
site i. More often than not, driving and dissipation
inevitably heat up the system and are thus detrimental to
superfluid order. However, focusing on the thermodynamic
limit with infinite boson numbers (where dissipative
tunneling between symmetry-breaking states takes an
infinite time [33–35]) and a regime where the driving,
dissipation, and interaction rates are much smaller than the
hopping rate (Δ, g, γ ≪ J), superfluidity is expected to
survive in the nonequilibrium steady state. Indeed, this is
supported by experimental observations in exciton-polar-
iton BECs [14,15,36] and theoretical analysis based on
complex GP equations [37,38].
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Note as well that for weakly interacting bosonic models,
it is known that lattice effect is not important for ground
states, which are usually superfluid states with bosons
condensed at zero momentum irrespective of the lattice
geometry. In contrast, we show below that the lattice effect
plays an important role in our nonequilibrium steady state,
particularly through the Bose-surface nesting effect, which
is absent in a continuous space or nonbipartite lattice (e.g.,
triangle lattice).
In order to determine the steady-state configuration

of the system, we have numerically evolved Eq. (4)
until it settles into some final state that we denote by
limt→∞ ψ iðtÞ≡ ψ̄ i. We have exhaustively analyzed differ-
ent random initial conditions, especially initial configura-
tions randomly distributed around a uniform complex
background ψ0, that is, ψ ið0Þ ¼ ψ0 þ δψ i, with δψ i having
random phases and magnitudes uniformly distributed in the
interval ½0; 0.1jψ0j�. For the parameters of interest, we have
found that the steady-state properties are independent of the
initial state. Of course, patterns spontaneously break the
system’s translational invariance and can therefore emerge

in any of several equivalent configurations (e.g., the
orientation of the stripes) randomly selected by the initial
fluctuations.
Note that, in momentum space, the nonlinear terms

induce scattering between different k modes, leading to a
nonlinear competition that is won by modes located at the
Bose surface, where the divergence rates are maximized.
The geometry of such Bose surface plays then a crucial role
in determining the spatial pattern into which the bosons
condense. In the following, we study two different Bose
surfaces, depicted in Fig. 1(a) and (d). We focus the
numerics on moderate values of the interactions (g < γ,
in particular) since otherwise the term gjψ ij2 might induce a
shift of the chemical potential and bring us off the Bose-
surface geometry in which we are interested. This regime is
also aligned with realistic experimental conditions [39–41]
in the implementation we propose below.
Generic Bose surface versus Bose-surface nesting.—

We first consider the ν ≠ 0 case, for which the Bose surface
forms a closed ring with C4 rotational symmetry [see
Fig. 1(a)]. Since the divergence rates of all the modes at the

FIG. 1. Two characteristic Bose surfaces (blue solid line, determined by εk − ν ¼ 0) with (a) generic geometry with ν ≠ 0 and
(d) nested geometry with ν ¼ 0, whose opposite contours are connected by a G=2 ¼ ðπ; πÞ vector. In (b) and (c) we show the steady-
state density distribution in momentum and real space (lighter colors correspond to larger densities), respectively, for a generic geometry
with ν ¼ −J. We consider the nested-surface case in (e) and (f) where we plot, respectively, the steady-state density distribution in
momentum space and the phase distribution in real space, blue (orange) tiles corresponding to a 3π=4 (−π=4) phase. The parameters are
chosen asΔ ¼ γ ¼ 0.1J, g ¼ 0, and, L ¼ 64 (note that real-space plots zoom into the central area of the simulated domain, for which we
chose periodic boundaries).
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Bose surface are identical, one might expect them to have a
uniform density distribution. This is additionally supported
by the fact that momentum conservation allows now for the
so-called “BCS” scattering channel [42] ðk1;−k1Þ →
ðk2;−k2Þ that couples arbitrary momenta �k1 and �k2
on the Bose surface.
This intuition is challenged, however, by our numerical

results. We show in Fig. 1(b) the steady-state density
nk ¼ jψ̄kj2. In contrast to the expected uniform distribution
on the Bose surface, a pair of �k modes is spontaneously
selected by the random initial conditions as evidenced by
the sharp peaks on the plot. In Fig. 1(c), we show the
corresponding real-space density ni ¼ jψ̄ ij2, which shows
the corresponding striped pattern. In addition to the
exhaustive numerical analysis, we have been able to prove
analytically [30] that these striped patterns are stable
against perturbations with momenta at the Bose surface
and also against small-momentum excursions (see below).
In contrast, we prove in [30] that even though the expected
uniform solution exists, it is unstable. Moreover, in [30]
we show that the selected amplitudes have the fixed-
phase relation ψ̄k ¼ −iψ̄�

−ke
−iφ ¼ eiϕ

ffiffiffiffiffiffiffiffi
ρ=3

p
, where φ ¼

argfγ þ igg and ρ ¼ L2Δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ g2

p
. ϕ is an arbitrary

phase that determines the location of the pattern.
The most interesting situation occurs for the square

lattice model with ν ¼ 0, where the Bose surface contours
coincide when shifted along a fixed reciprocal lattice vector
G=2 ¼ ðπ; πÞ [see Fig. 1(d)]. This effect, dubbed “Fermi
surface nesting,” is known to play an important role in
determining the properties of the Fermi-Hubbard model at
half-filling [43]. One of the most important consequences
of such an effect is that the number of scattering channels
increases dramatically, e.g., given three momenta on the
Bose surface, one can always find a fourth one such
that k1 þ k2 ¼ k3 þ k4 þ G (Umklapp scattering) [see
Fig. 1(d)]. Such scattering channels are allowed in the
lattice system since the total momentum is shifted by a
reciprocal lattice vector during the scattering process. In the
closed fermionic model, these new channels are responsible
for the gap opening and the divergence of the density wave
susceptibility at momentum G=2 [42]. Here, we show that
they can also significantly change the properties of the
nonequilibrium steady state of our bosonic model.
The steady-state density distribution nk is plotted in

Fig. 2(e), where we see that, in contrast to the previous
generic Bose surface where condensation occurs only on
two �k modes, here all the modes on the Bose surface are
occupied. Such a steady state is an unconventional BEC,
with bosons condensed on a closed ring instead of discrete
points. In turn, the real-space density distribution ni is
completely uniform [30], while the phase distribution
ϕi ¼ argfψ̄ ig follows the rule that each lattice site must
have two pairs of neighbors differing by a π phase, which
creates nontrivial phase portraits [Fig. 1(f)]. We have been
able to derive this solution analytically, even proving that it

is robust against arbitrary perturbations [30]. In equilibrium
physics, bosons usually prefer to condense into discrete
points to avoid exchange energy. Only when very specific
conditions occur (e.g., moatlike band structures with
infinitely degenerate minima forming a closed curve)
has it been conjectured that the interplay between the
degeneracy and quantum correlations leads to a Bose-liquid
state of the type we have found here [26,27]. In our
nonequilibrium case, such unconventional superfluid
states have a completely different origin: a momentum
selection mechanism induced by the interplay between
nonequilibrium conditions, nonlinear mode couplings, and
lattice effects. Energy minimization is no longer a criterion
here since the steady state in our model is not related to any
ground state.
Given the qualitative difference between the steady states

for generic and nested Bose surfaces, one may wonder how
they are connected as ν approaches zero. In the parameter
regime that we study, g < γ ≪ J, the interaction-induced
shift of ν can be neglected, and thus the physics is
dominated by its bare value. As a consequence, the
transition between these two steady states occurs suddenly
at ν ¼ 0 within the mean-field approximation. For different
parameter regimes (e.g., the strongly interacting case
g ∼ J), the shift in ν and corrections to the mean-field
theory must become relevant, leading to a more compli-
cated transition. Possible scenarios include one in which
the discontinuous transition is turned into a crossover with
coexistence of both states or one in which the original
transition point at ν ¼ 0 is extended into a stable inter-
mediate phase where the �k peaks of the striped pattern
continuously broaden as ν is reduced toward 0.
Relaxation spectrum.—It is interesting to understand the

way in which perturbations relax toward the steady-state
condensate. To this aim, and as shown in detail in [30], we

FIG. 2. Real (top) and imaginary (bottom) parts of the relax-
ation spectrum as a function of momentum excursions py (for
px ¼ 0). We consider a square lattice with ν ¼ −J, Δ ¼ 0.1 J,
g ¼ 0, and k ¼ ð0; 2π=3Þ. A single imaginary eigenvalue (blue,
dashed-dotted line) dominates the spectrum around p ¼ 0.
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transform Eq. (4) to momentum space and linearize it with
respect to fluctuations around a generic Bose surface where
bosons have condensed into a pair of modes with opposite
momenta �k0. Specifically, we expand the amplitudes as

ψkðtÞ ¼ ψ̄k0δk0k þ ψ̄−k0δ−k0k þ dkðtÞ ð5Þ

and consider only fluctuations with small-momentum
excursions p around �k0, that is, jpj ≪ jk0j. This leads
to a closed linear system i _dp ¼ Lpdp for the fluctuations
dp ¼ ðdk0þp; d−k0þp; d�k0−p; d

�
−k0−pÞT , with a relaxation

matrix Lp that we provide in [30]. The eigenvalues of this
matrix determine the relaxation spectrum and are plotted in
Fig. 2 for one characteristic example. For all choices of
parameters, we find that relaxation is dominated by a
single eigenvalue, which can be approximated by a purely
imaginary quadratic form:−ipTKp. The curvature matrixK
depends on the system parameters, but the result is
otherwise universal, indicating a purely diffusive, non-
propagating behavior of the elementary excitations of our
open system that is similar to what has been shown for
exciton-polariton condensates [37,44]. By exhaustive
inspection, we have found that the striped patterns are
stable (i.e.,K has positive eigenvalues) for g < γ but can be
destabilized when g > γ, leading to more complicated
patterns that we will study in the future. We have also
checked that our results are robust against linear dissipation
as long as nonlinear dissipation dominates.
Experimental implementation.—We propose to

implement our model with an array of superconducting
circuits known as transmons [45] that act as weakly
nonlinear quantum oscillators (discussed in more detail
in [30]). Pair driving and dissipation are well established for
these circuits [39–41], in which the “chemical potential” ν
becomes easily tunable through external fields [30]. In
addition, current chips allow for 2D lattices with as many as
54 transmons and tunable couplings, as demonstrated in
Google’s pioneering experiments leading to quantum
advantage [46]. This number keeps growing steadily,
motivated by the goal of practical quantum computing.
Moreover, we remark that transmon arrays have already
allowed for proof-of-principle experiments exploring the
standard BH model in 1D [47].
We emphasize that our work reveals the intriguing

possibility that quantum computation platforms are not
only of immense practical significance but also pose their
own interest as analog quantum simulators of emergent
many-body phenomena far from equilibrium.
Discussion.—We comment now on the relation and

differences between our results and other relevant work.
Stripe phases, as a consequence of condensation on a pair
of modes with opposite momenta, have been observed
in both equilibrium [48] and nonequilibrium [22] closed
interacting bosonic systems. In both cases, the momenta
correspond to the energy minimum of an effective

Hamiltonian (e.g., a Floquet Hamiltonian for periodically
driven systems [22]). In contrast, in our driven-dissipative
model, the pair of momenta is spontaneously selected
among extensive degenerate modes at the Bose surface,
which is formed by the maximally divergent momenta
and thus has nothing to do with the minimum of any
Hamiltonian. Hexagonal patterns [14] and solitons [15],
which have been observed in continuous-space driven-
dissipative exciton-polaritons [36], emerge from the inter-
play between linear losses, interactions, and a judicious
spatiotemporal choice of driving fields. In our system,
nonlinear dissipation and the lattice effect are crucial for the
stabilization of exotic states with bosons condensed on a
closed ring. This state is of great relevance for some open
problems in condensed matter and has not been predicted
before by any other driven-dissipative mechanism to our
knowledge. Currently, lattices can be engineered on exci-
ton-polariton systems [49–51], opening the possibility of
implementing our ideas on such platforms as well.
Conclusions and outlook.—In this Letter, we have

studied the steady states of a pair-driven-dissipative BH
model of relevance for current quantum simulators based
on superconducting circuit arrays and leading to unconven-
tional superfluid states of relevance for condensed matter.
We have shown that the shape of a so-called “Bose surface”
is crucial for the steady-state properties of driven-
dissipative bosonic systems, which is similar to the proper-
ties of interacting fermions at equilibrium. Future develop-
ments will include the analysis of models with flatbands
(i.e., bands with constant εk) in which bosons can poten-
tially condense into spatially localized structures such as
solitons.
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