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Theory and numerical simulations of the thinning of liquid threads at high superficial concentration of
surfactants suggest the existence of an asymptotic regime where surface tension balances surface viscous
stresses, leading to an exponential thinning with an e-fold time FðΘÞð3μs þ κsÞ=σ, where μs and κs are the
surface shear and dilatational viscosity coefficients, σ is the interfacial tension, Θ ¼ κs=μs, and FðΘÞ is a
universal function. The potential use of this phenomenon to measure the surface viscosity coefficients is
discussed.
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Introduction.—The adsorption of surfactants at fluid
interfaces induces substantial modifications of their
mechanical properties that lead to a number of effects of
relevance in many physiological and technological contexts
[1]. The variety and complexity of the interactions between
the bulk fluids and the surface layer at the microscopic level
complicates the development of rigorous mean-field mod-
els that are necessary to describe interfacial dynamics using
continuum theories [2,3]. The simplest constitutive equa-
tion relating the surface stress with the surface rate of strain
is the Boussinesq-Scriven (BS) law [4,5], which may be
seen as the surface analog of the Navier-Poisson law.
Indeed, the BS law assumes that the surface state of stress is
isotropic, instantaneous, and linear in the surface rate of
strain, and disregards complex surface rheology [2,3,6,7],
leading to the concept of a Newtonian surface [5]. The BS
law introduces three material parameters, namely, the
surface tension coefficient σðΓ; TÞ, and the surface shear
and dilatational viscosity coefficients [8] μsðΓ; TÞ and
κsðΓ; TÞ, respectively, which depend on the surface con-
centration of surfactant Γ and on the temperature T. An
important difficulty in the practical use of the BS law
concerns the fact that most surfactants are soluble in the
bulk fluids, which implies the need to account for bulk
diffusion and adsorption-desorption kinetics in the descrip-
tion. In fact, since Γ is extremely difficult to measure
directly, the bulk concentration of surfactants c is normally
used instead as the experimental control parameter.
However, the relationship between Γ and c is not universal,
but depends on the particular system under study in a
nontrivial way that is usually rationalized in terms of
appropriate adsorption isotherms [9]. The latter difficulty
can be avoided by using high bulk concentrations, typically
several times the critical micelle concentration (CMC), in
which case the surface concentration is limited by maxi-
mum packing and is said to be saturated, Γ ¼ Γsat, and the
corresponding values of the surface tension and surface

viscosity coefficients reach corresponding asymptotes
σsat ¼ σðΓsat; TÞ, μsats ¼ μsðΓsat; TÞ, and κsats ¼ κsðΓsat; TÞ
[6,10–12]. Moreover, not only surfactants can confer sur-
face viscous resistance to fluid interfaces. Surface viscous
forces also arise, for instance, in vesicles, biological
membranes, or active interfaces, where they coexist with
the intrinsic elastic forces, and they may have a dominant
role in their dynamics as detailed in Refs. [13–17] and
references therein, polymersomes being the prominent
example.
For isothermal saturated interfaces, the Marangoni stress

is negligible, and the only relevant surface stresses are the
Young-Laplace pressure and the surface viscous stresses
[10–12]. Since the surface viscosity coefficients are very
difficult to measure under the presence of significant
Marangoni stresses and sorption kinetics in that all these
effects are intrinsically entangled [9,18], working at satu-
rated conditions opens promising avenues to develop novel
measurement techniques. Another difficulty that must be
circumvented is the fact that the known values of the
surface viscosity coefficients are very small, and thus the
corresponding stresses tend to be hindered by bulk stresses.
At small Reynolds numbers, the relative importance of the
surface-to-bulk viscous stresses is given by the Boussinesq
numbers Bq ¼ μs=ðμlÞ and ΘBq, where Θ ¼ κs=μs is the
dilatational-to-shear surface viscosity ratio, μ is the vis-
cosity of the bulk fluid, and l is the characteristic length
scale. Consequently, for the surface viscous stresses to be
larger than the bulk viscous stresses it is necessary that
Bq > 1 ⇒ l < μs=μ, where the length scale μs=μ plays
here a similar role as the Saffman-Delbrück length in
membrane biophysics [13,19–21]. As outlined by
Ref. [13], this length can be l ≈ 1 μm for liposomes
[22–24], and l ≈ 1 mm for polymersomes [25], where
surface viscous forces dominate. For example, diblock
copolymer vesicles have associated surface viscosities
which are up to 500 times higher than the typical values.
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These small scales can be reached by means of several
thinning mechanisms, e.g., the drainage of foams and
emulsions [1,26], the formation and drainage of thin films
[11,27–30], the lifetimes of antibubbles or bubbles bursting
at a free surface [12,31,32], or the dynamical necking
processes leading to the pinch-off of liquid bridges [33–35],
dripping faucets [36], or vesicles and biological membranes
[13–17,37–39].
In this Letter, we report theoretical and numerical

evidence pointing to a new asymptotic regime where
surface tension balances surface viscous stresses. To that
end, we consider the small scales generated by the thinning
of axisymmetric liquid filaments due to capillary drainage,
whereby the dominant force balance is σ=R2 ∼ μs _R=R3,
where RðtÞ is the filament radius and _R ¼ dR=dt its
associated radial velocity. The latter balance assumes that
R ≪ μs=μ, i.e., that the local Boussinesq number
Bql ¼ μs=ðμRÞ ≫ 1, and anticipates the existence of the
exponential thinning regime RðtÞ ∝ exp ð−t=tcÞ, where
tc ∼ μs=σ is a characteristic time that depends only on
material parameters [40]. Note that tc may be called the
surface-viscocapillary time in analogy with the classical
viscocapillary time, μl=σ, given by the balance of surface
tension and bulk viscous forces, that, in contrast with its
surface analog, depends on the length scale l. In the
absence of surfactants, the local balance of surface tension
and bulk viscous forces, σ=R2 ∼ μ _R=R2, provides _R ∼ σ=μ,
i.e., a thinning at the viscocapillary velocity σ=μ [41,42].
Numerical simulations.—We performed numerical sim-

ulations of the Stokes equations for three different axisym-
metric flow configurations (see Fig. 1 and the movies
provided as Supplemental Material [43]). In case I, we

studied the spatially periodic dynamics of a long viscous
liquid thread inside an unbounded passive ambient in the
absence of gravity. The liquid filament was destabilized by
a small-amplitude harmonic disturbance of the cylindrical
shape with a wave number k below the Plateau-Rayleigh
cutoff [40,44–46]. In case II, we considered the unstable
dynamics of a liquid bridge between two solid cylinders
surrounded by a passive ambient, with gravity pointing
in the axial direction and an associated Bond number
Bo ¼ ρgR2

0=σ, where ρ is the liquid density. The bridge
length is fixed above the critical length for spontaneous
breakup due to the Plateau-Rayleigh instability [33–35].
Finally, case III was the same as case I, but with the liquid
filament surrounded by an immiscible ambient liquid
[47–54].
Taking the initial thread radius R0 as the length scale, the

surface-viscocapillary time ð3μs þ κsÞ=σ, and velocity,
σR0=ð3μs þ κsÞ, as the time and velocity scales, and the
capillary pressure σ=R0 as the pressure scale, the dimen-
sionless Stokes equations read

∇ · u ¼ 0; and 0 ¼ ∇ · T in V; ð1aÞ

∇ · û ¼ 0; and 0 ¼ ∇ · T̂ in V̂; ð1bÞ

where hatted quantities correspond to the outer fluid,
uðx; tÞ ¼ uer þ wez is the velocity field, u and w being
the radial and axial velocity components, and V, V̂ are the
inner and outer fluid domains. The bulk stress tensors are

T ¼ −pI þ 1

BqðΘþ 3Þ ½∇uþ ð∇uÞT�; ð2aÞ

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

FIG. 1. Snapshots of the liquid thread extracted from the numerical simulations. (a)–(d) Case I with Bq ¼ 3.4,Θ ¼ 1 and k ¼ 0.3. (e)–
(h) Case II with Bq ¼ 0.1, Θ ¼ 2, L=R0 ¼ 2π, and Bo ¼ 0.3. (i)–(l) Case III with Bq ¼ 2, Θ ¼ 3, Nμ ¼ 10−3, and k ¼ 0.3.
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T̂ ¼ −p̂I þ Nμ

BqðΘþ 3Þ ½∇ûþ ð∇ûÞT�; ð2bÞ

where I is the identity tensor, pðx; tÞ is the pressure field,
Bq ¼ μs=ðμR0Þ is the Boussinesq number, and Nμ ¼ μ̂=μ is
the outer-to-inner viscosity ratio. Note that the relative
importance of liquid inertia compared with the viscous
forces is measured by a local Reynolds number Rel ¼
LaRj _Rj, where La ¼ ρσR0=μ2 is the Laplace number.
Anticipating that R ∼ exp ð−tÞ for t ≫ 1, it is deduced
that Rel ∼ La exp ð−2tÞ, indicating that inertia becomes
negligible at large times. The interfacial stress balance reads

ðT̂ − T Þ · nþ ∇s · T s ¼ 0 at ∂V; ð3Þ
where n is the outer normal to the interface and T s is the
surface stress tensor, modeled using the BS law [4,5],

T s ¼
�
1þ Θ − 1

Θþ 3
ð∇s · usÞ

�
I s

þ 1

Θþ 3
½ð∇susÞ · I s þ I s · ð∇susÞT�; ð4Þ

where us is the fluid velocity at the interface, I s ¼ I − nn is
the surface projection tensor, and ∇s ¼ I s · ∇. As explained
in the introduction, μs and κs generally depend on the surface
concentration of surfactant [6], unless the region adjacent to
the interface is highly populated with surfactant molecules,
and their adsorption time is much smaller than the character-
istic hydrodynamic time. In the latter saturated limit, the
effect of the Marangoni stress ∇sσ becomes negligible
[10–12], and thus a surfactant transport equation is not
needed to close the mathematical model. The BS law has
also been used in the context of passive and active vesicles
and membranes [13–17], in the latter case coupled with
continuum theories borrowed from nematic and active-gel
theories [15–17,55–58]. Additionally, at the interface ∂V
we impose the continuity of velocities, û ¼ u, and the
kinematic condition, us · n ¼ _xs · n, where xs is the
parametrization of the interface [see Fig. 1(a)]. The boundary
conditions in the z direction are ∂zu ¼ w ¼ 0 at
z ¼ 0, π=k for cases I and III, while in case II we impose
u ¼ w ¼ 0 at z ¼ 0, L=R0, where L is the length of the
liquid bridge. In the three cases, the axisymmetry condition
∂rw ¼ u ¼ 0 holds at the axis, r ¼ 0. As for the initial
conditions, we assume that the fluids are initially at rest,
u ¼ 0, and impose shape disturbances of the form
xs ¼ ½1þ ε cosðkzÞ�er þ zez in cases I and III, and xs ¼
f1þ ε½cos (2πz=ðL=R0Þ) − 1�ger þ zez in case II, where
ε ≪ 1 is a small disturbance amplitude. We now have a
closed system to determine u, p, and xs in cases I and II, and
additionally p̂ and û in case III. The numerical integration
employs the same methodology explained in previous
studies [46,59], where a detailed description can be found.
Numerical results.—Figure 1, and the corresponding

movies provided as Supplemental Material [43], show

representative interface evolutions for the three cases under
study. The computational domains are indicated in the
snapshots (a),(e),(i) with dashed lines, and the inset in
(d) shows the local flow near the symmetry plane of the
elongated thin thread connecting the two main drops. As
anticipated before, the surface viscous stresses avoid the
occurrence of the finite-time singularity that would lead to
pinch-off if only bulk viscous stresses balanced interfacial
tension [42]. Instead, the radius of the cylindrical filament
is observed to relax exponentially at large times, as
evidenced in Fig. 3(a), which also shows that the thread
relaxation rate increases monotonically with Θ. It is note-
worthy that these exponentially decaying filamentary
structures resemble the celebrated beads-on-a-string struc-
ture in viscoelastic liquid threads [60–63]. Nevertheless, the
physical mechanisms underlying both phenomena are
completely different, as demonstrated below.
Local analysis of the large-time behavior.—To develop a

simple theory that accounts for the exponential relaxation
of the liquid thread, we examined the numerical evidence
carefully. In particular, motivated by the shape evolution
shown in Fig. 1, we approximate the thinning ligament by a
cylinder of radius RðtÞ, and we assume that the axial
velocity inside the ligament is uniform in the radial
direction w ¼ wðz; tÞ as evidenced by the profiles of axial
velocity extracted at the axis waðz; tÞ and at the interface
wsðz; tÞ ≈ waðz; tÞ, represented in Figs. 2(a)–2(c). For
simplicity, we decided to develop the local model dis-
regarding the bulk viscous stresses of the outer flow, so that
T̂ ≈ −p̂I . Indeed, although a cylindrical interface cannot be
an exact solution of Eq. (1) when Nμ ≠ 0, we will show
below that the exponential thinning regime occurs when the
inner and outer bulk stresses are both negligible
compared to the surface stresses. The continuity equation
in (1a) implies that the radial velocity uðr; z; tÞ ¼ −γr=2,
where γ ¼ ∂zw is the axial strain rate. Moreover,
the kinematic condition applied at r ¼ RðtÞ implies that
γðtÞ ¼ −2 _RðtÞ=RðtÞ is only a function of time, and thus
wðz; tÞ ¼ γðtÞz, as observed in Figs. 2(a)–2(c) in the region
0 ≤ z − zmin ≲ 2. It is thereby deduced that the local
elongational flow field uðr; z; tÞ ¼ −2z _R=Rez þ r _R=Rer
provides a good description of the local dynamics inside
the filament. According to the Stokes equation for the inner
stream (1a), the latter velocity field is an exact solution
provided that the pressure field depends only on time,
p ¼ pðtÞ, in agreement with the results of Figs. 2(d)–2(f),
which show that the pressure field inside the thread is
approximately uniform in the region where w ¼ γðtÞz. The
dynamics of the thread is then given by the function RðtÞ,
which is determined from the interfacial stress balance (3).
In particular, the surface stress tensor (4) simplifies to Tzz

s ¼
1 − _R=R and Tθθ

s ¼ 1þ ½ð3 − ΘÞ=ð3þ ΘÞ� _R=R, the
remaining entries being null, whereby the surface stress
and the bulk stress jump at the interface read, respectively,
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∇s · T s ¼ −
�
1

R
þ 3 − Θ
3þ Θ

_R
R2

�
er þ ∂z

�
1 −

_R
R

�
ez; ð5aÞ

ðT̂ −T Þ ·n¼
�
ps− p̂s−

2

Bqð3þΘÞ
_R
R

�
erþ

∂z
_R

Bqð3þΘÞez.

ð5bÞ

UsingEqs. (3) and (5) we obtain the normal and tangential
interfacial stress balances. For Θ ≠ 3 and t ≫ 1, the normal
component reduces to _R ¼ −FðΘÞR, wherewe have defined
the positive-definite function FðΘÞ ¼ ½ð3þ ΘÞ=ð3 − ΘÞ�×
½1 − limt→∞ðps − p̂sÞR�, represented for the three cases in
Fig. 3(b) together with the approximationFðΘÞ ≈ ð3þ ΘÞ=
ð28þ 3.02ΘÞ, which provides a good fit to the numerical
results. Note that the value FðΘ ¼ 3Þ ≃ 0.166 is obtained

(a) (b) (c)

(d) (e) (f)

FIG. 2. (a)–(c) Axial velocity normalized with the local strain rate evaluated at the axis, wa=γ, and at the interface, ws=γ, as functions
of z for (a) case I at t ¼ 53.326, (b) case II at t ¼ 57.780, and (c) case III at t ¼ 46.146 [snapshots (d),(h) and (l) in Fig. 1]. The insets
display the local strain rates, γðtÞ. (d),(e) Axial profiles of the pressure at the axis, paðz; tÞ, and at the interface, psðz; tÞ, for cases I and II.
(f) Axial profile of the pressure jump at the interface psðz; tÞ − p̂sðz; tÞ for case III. The insets in (d)–(f) show psðz ¼ zmin; tÞ (d),(e), and
psðzmin; tÞ − p̂sðzmin; tÞ (f), where zmin is the axial position of minimum radius, with zmin ¼ π=k in cases I and III.

(a) (b)

FIG. 3. (a) The minimum thread radius RðtÞ for different conditions specified in the legend. (b) The universal function FðΘÞ. The solid
line corresponds with the approximation FðΘÞ ≈ ð3þ ΘÞ=ð28þ 3.02ΘÞ.
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using the tangential stress balance. Finally, the thread radius
obeys RðtÞ ∝ exp ½−FðΘÞt�, in close agreement with all the
numerical results represented in Fig. 3(a).
Discussion and applicability conditions.—The assump-

tions of constant surface viscosities and negligible
Marangoni stress clearly need some justification. As dis-
cussed by Quéré and de Ryck [10] and by Scheid et al. [11]
in the context of axisymmetric and planar coating flows,
respectively, two conditions must be fulfilled to ensure the
validity of these hypotheses. First, as the thread shrinks,
there must be enough available surfactant at the sublayer
adjacent to the interface. This condition is satisfied when
c ≫ ΓsatR−1

0 , and can be easily guaranteed in experiments
by means of a liquid bath with a high concentration of
surfactant surrounding the inner thread [64], as in the
simulations of case III considered herein. Moreover, it
could be advantageous to use outer liquids of small
viscosity, Nμ ≪ 1, to replenish the interface with surfac-
tants, in that the ambient fluid acts passively, as in cases I
and II of the present investigation. Second, the adsorption
velocity must be larger than the characteristic interfacial
velocity, what implies that the flux from the bulk, kac,
where ka is the adsorption velocity, is much larger than the
surface flux Γsatσ

satð3μsats þ κsats Þ−1 _RR−1, requiring that
c ≫ Γsatk−1a σsatð3μsats þ κsats Þ−1FðΘÞ, a condition that,
again, can be accomplished using a highly concentrated
outer bath. Finally, it is interesting to note that the results
obtained herein using a fully two-dimensional Stokes and
Boussinesq-Scriven description cannot be deduced from
the one-dimensional lubrication approximation derived in
Ref. [40] which, assuming that the curvature is h−1 in the
surface viscous terms, has the conservation form

0 ¼ ∂z

�
h2Kþ 3h2∂zu

BqðΘþ 3Þ þ
h∂zuðΘþ 9Þ
2ðΘþ 3Þ

�
; ð6Þ

where K ¼ h−1ð1 þ h02Þ−1=2 þ h00ð1 þ h02Þ−3=2 [63,65]
and primes indicate derivatives with respect to z, together
with the continuity equation ∂th2 þ ∂zðh2uÞ ¼ 0.
Integrating Eq. (6) yields a function of time λðtÞ that can
be seen as the total force acting on the filament [66], with
λðtÞ ∼ RðtÞ to balance the capillary pressure term, so that
λðtÞ=RðtÞ → Λ for t ≫ 1, where Λ is a function of Θ only.
Although purely cylindrical solutions of Eq. (6) obey an
equation similar to that deduced above from the Stokes
equations, the parameterΛ can only be relatedwith the liquid
pressure if the full Eqs. (1)–(4) are considered, provi-
ding limt→∞ðps − p̂sÞR ¼ 1 − ð3 − ΘÞðΛ − 1Þ=ð9þ ΘÞ, as
deduced also with the second-order parabolic model [40].
Concluding remarks.—We have shown that a fluid

interface saturated with surfactant molecules displays an
exponential capillary thinning regime where surface vis-
cous stresses balance surface tension. This new dynamical
regime had not been reported in previous numerical [34,36]
and experimental [33,35,36,45] investigations probably

because, in all these studies, the depletion of surfactant
due to interfacial advection was not compensated by an
outer reservoir able to replenish the interface. Our findings
could well open promising avenues in developing novel
techniques for the high-precision measurement of the
surface viscosity coefficients [3].
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Note added.—We recently became aware of a similar study
reporting the exponential thinning of liquid threads in the
limit of dominant surface diffusion [67].
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Europhys. Lett. 69, 966 (2005).

[32] Y. Vitry, S. Dorbolo, J. Vermant, and B. Scheid, Adv.
Colloid Interface Sci. 270, 73, (2019).

[33] Y. C. Liao, E. I. Franses, and O. A. Basaran, Phys. Fluids 18,
022101 (2006).

[34] A. Ponce-Torres, M. A. Herrada, J. M. Montanero, and J. M.
Vega, Phys. Fluids 28, 112103 (2016).

[35] N. M. Kovalchuk, H. Jenkinson, R. Miller, and M. J. H.
Simmons, J. Colloid Interface Sci. 516, 182 (2018).

[36] A. Ponce-Torres, J. M. Montanero, M. A. Herrada, E. J.
Vega, and J. M. Vega, Phys. Rev. Lett. 118, 024501 (2017).

[37] R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73, 1392 (1994).
[38] T. Ruiz-Herrero, T. G. Fai, and L. Mahadevan, Phys. Rev.

Lett. 123, 038102 (2019).
[39] C. Tozzi, N. Walani, and M. Arroyo, New J. Phys. 21,

093004 (2019).
[40] A. Martínez-Calvo and A. Sevilla, J. Fluid Mech. 846, 877

(2018).
[41] W. S. Rayleigh, Philos. Mag. J. Sci. 34, 145 (1892).

[42] D. Papageorgiou, Phys. Fluids 7, 1529 (1995).
[43] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.114502 for three
examples of animated numerical sequences.

[44] N. Ashgriz and F. Mashayek, J. Fluid Mech. 291, 163
(1995).

[45] P. M. Kamat, B. W. Wagoner, S. S. Thete, and O. A.
Basaran, Phys. Rev. Fluids 3, 043602 (2018).

[46] A. Martínez-Calvo, J. Rivero-Rodríguez, B. Scheid, and A.
Sevilla, J. Fluid Mech. 883, A35 (2020).

[47] S. Tomotika, Proc. R. Soc. 150, 322 (1935).
[48] A. Hajiloo, T. Ramamohan, and J. Slattery, J. Colloid

Interface Sci. 117, 384 (1987).
[49] H. A. Stone and L. G. Leal, J. Fluid Mech. 220, 161

(1990).
[50] M. Tjahjadi, H. A. Stone, and J. M. Ottino, J. Fluid Mech.

243, 297 (1992).
[51] W. J. Milliken, H. A. Stone, and L. G. Leal, Phys. Fluids A

5, 69 (1993).
[52] H. A. Stone and M. P. Brenner, J. Fluid Mech. 318, 373

(1996).
[53] S. Gaudet, G. H. McKinley, and H. A. Stone, Phys. Fluids 8,

2568 (1996).
[54] S. Hansen, G. Peters, and H. Meijer, J. Fluid Mech. 382, 331

(1999).
[55] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liver-

pool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys.
85, 1143 (2013).

[56] J. Prost, F. Jülicher, and J.-F. Joanny, Nat. Phys. 11, 111
(2015).

[57] V. Hakim and P. Silberzan, Rep. Prog. Phys. 80, 076601
(2017).

[58] F. Jülicher, S. W. Grill, and G. Salbreux, Rep. Prog. Phys.
81, 076601 (2018).

[59] J. Rivero-Rodríguez and B. Scheid, J. Fluid Mech. 842, 215
(2018).

[60] M. Goldin, J. Yerushalmi, R. Pfeffer, and R. Shinnar,
J. Fluid Mech. 38, 689 (1969).

[61] A. B. Bazilevskii, S. I. Voronkov, V. M. Entov, and A. N.
Rozhkov Dokl. Akad. Nauk SSSR 257, 336 (1981).

[62] V. M. Entov and E. J. Hinch, J. Non-Newtonian Fluid Mech.
72, 31 (1997).

[63] C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H.
McKinley, J. Fluid Mech. 556, 283 (2006).

[64] B. Scheid (private communication).
[65] V. M. Entov and A. L. Yarin, Fluid Dyn. 19, 21 (1984).
[66] J. Li and M. A. Fontelos, Phys. Fluids 15, 922 (2003); M. A.

Fontelos and J. Li, J. Non-Newtonian Fluid Mech. 118, 1
(2004).

[67] H. Wee, B. W. Wagoner, P. M. Kamat, and O. A. Basaran,
Phys. Rev. Lett. 124, 204501 (2020).

PHYSICAL REVIEW LETTERS 125, 114502 (2020)

114502-6

https://doi.org/10.1073/pnas.1810896115
https://doi.org/10.1073/pnas.1810896115
https://doi.org/10.1103/PhysRevLett.123.188101
https://doi.org/10.1103/PhysRevLett.123.118101
https://doi.org/10.1103/PhysRevLett.123.118101
https://doi.org/10.1017/jfm.2016.96
https://doi.org/10.1017/jfm.2016.96
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1063/1.868670
https://doi.org/10.1007/s100510051042
https://doi.org/10.1016/S0006-3495(00)76296-5
https://doi.org/10.1016/S0006-3495(00)76296-5
https://doi.org/10.1088/0953-8984/18/28/S04
https://doi.org/10.1088/0953-8984/18/28/S04
https://doi.org/10.1140/epje/i200101032
https://doi.org/10.1021/la00021a046
https://doi.org/10.1021/la00021a046
https://doi.org/10.1039/C4SM02661F
https://doi.org/10.1371/journal.pone.0175753
https://doi.org/10.1017/jfm.2013.625
https://doi.org/10.1017/jfm.2013.625
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103103
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103103
https://doi.org/10.1209/epl/i2004-10435-7
https://doi.org/10.1016/j.cis.2019.05.007
https://doi.org/10.1016/j.cis.2019.05.007
https://doi.org/10.1063/1.2166657
https://doi.org/10.1063/1.2166657
https://doi.org/10.1063/1.4967289
https://doi.org/10.1016/j.jcis.2018.01.039
https://doi.org/10.1103/PhysRevLett.118.024501
https://doi.org/10.1103/PhysRevLett.73.1392
https://doi.org/10.1103/PhysRevLett.123.038102
https://doi.org/10.1103/PhysRevLett.123.038102
https://doi.org/10.1088/1367-2630/ab3ad6
https://doi.org/10.1088/1367-2630/ab3ad6
https://doi.org/10.1017/jfm.2018.293
https://doi.org/10.1017/jfm.2018.293
https://doi.org/10.1080/14786449208620301
https://doi.org/10.1063/1.868540
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.114502
https://doi.org/10.1017/S0022112095002667
https://doi.org/10.1017/S0022112095002667
https://doi.org/10.1103/PhysRevFluids.3.043602
https://doi.org/10.1017/jfm.2019.874
https://doi.org/10.1098/rspa.1935.0104
https://doi.org/10.1016/0021-9797(87)90397-3
https://doi.org/10.1016/0021-9797(87)90397-3
https://doi.org/10.1017/S0022112090003226
https://doi.org/10.1017/S0022112090003226
https://doi.org/10.1017/S0022112092002738
https://doi.org/10.1017/S0022112092002738
https://doi.org/10.1063/1.858790
https://doi.org/10.1063/1.858790
https://doi.org/10.1017/S002211209600715X
https://doi.org/10.1017/S002211209600715X
https://doi.org/10.1063/1.869044
https://doi.org/10.1063/1.869044
https://doi.org/10.1017/S0022112098003991
https://doi.org/10.1017/S0022112098003991
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1038/nphys3224
https://doi.org/10.1038/nphys3224
https://doi.org/10.1088/1361-6633/aa65ef
https://doi.org/10.1088/1361-6633/aa65ef
https://doi.org/10.1088/1361-6633/aab6bb
https://doi.org/10.1088/1361-6633/aab6bb
https://doi.org/10.1017/jfm.2018.78
https://doi.org/10.1017/jfm.2018.78
https://doi.org/10.1017/S0022112069002540
https://doi.org/10.1016/S0377-0257(97)00022-0
https://doi.org/10.1016/S0377-0257(97)00022-0
https://doi.org/10.1017/S0022112006009633
https://doi.org/10.1007/BF01090901
https://doi.org/10.1063/1.1556291
https://doi.org/10.1016/j.jnnfm.2004.02.002
https://doi.org/10.1016/j.jnnfm.2004.02.002
https://doi.org/10.1103/PhysRevLett.124.204501

