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We present a technique for squeezed light detection based on direct imaging of the displaced-squeezed-
vacuum state using a CCD camera. We show that the squeezing parameter can be accurately estimated
using only the first two moments of the recorded pixel-to-pixel photon fluctuation statistics, with accuracy
that rivals that of the standard squeezing detection methods such as a balanced homodyne detection.
Finally, we numerically simulate the camera operation, reproducing the noisy experimental results with low
signal samplings and confirming the theory with high signal samplings.
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Introduction.—Squeezed light is an optical state in
which the fluctuations of one quadrature are suppressed
below the shot-noise limit [1–9]. It has become an
important resource in the field of quantum optics and
quantum information, as more and more optical techno-
logies are crossing the boundary into the quantum realm.
Squeezed states have been successfully applied in
continuous-variable quantum communication protocols
[10–12] and in improving performance of optical sensors
[13], including gravitational wave detectors [14].
Numerous methods for the generation of squeezed light
have developed based on a variety of nonlinear materials
[3,9]. The common ones utilize parametric down conver-
sion in nonlinear crystals [1,2,15] although atom-based
sources based on a polarization self-rotation effect [16–20]
and four-wave mixing [21–25] are also being pursued.
The detection of squeezed light is usually carried out in

one of three ways: by direct intensity detection or photon
counting (for intensity-squeezed light only), using a phase-
shifting cavity [3], and by far the most common among the
three, homodyne, or heterodyne detection by beating the
squeezed light field with a classical local oscillator. In this
Letter, we present a technique that allows us to characterize
the squeezing parameter in a displaced-squeezed vacuum
state employing a CCD camera without using correlation
detection. The main requirement of the camera is to output
a signal which is linear in the incoming photon number
[26–28]. We demonstrate that the amount of squeezing can
be derived from the first and second moments of the photon
statistics per pixel, with the accuracy similar to what would
be achieved with homodyne detection. At the same time,

the proposed method may be particularly beneficial in
applications of squeezing to enhance optical imaging
[27,29].
Method.—We mix the strong pump with squeezed

vacuum light jξi at an unbalanced beam splitter of
reflectivity θ ≪ 1 for the pump field. The pump is a
coherent light state jαeiϕ1iwith n̄pump ¼ jαj2 as the average
number of photons. The phase ϕ1 is the controllable phase
shift between jαi and jξi, which takes the state of the
resulting field from squeezing to antisqueezing. Though we
present the displacement here as a separate and active
operation, in reality it commonly comes for free [30]. In
other setups, the pump copropagates with the squeezed
light [15,17] and thus, the squeezed light is displaced by
default. Notably, we assumed that the displacing field is at
the same frequency as the squeezing field and maintains a
stable phase. In experiment, it could be originated from a
reused fundamental harmonic of the pump field which is
used in χð2Þ squeezers or the pumping field utilized in χð3Þ

squeezers. Furthermore, in principle, one can obtain the
information about the squeezing parameter from the same
photon statistics obtained by intensity measurements of the
original squeezed vacuum state without displacement.
One needs photon-number linearity in the few-photon
regime which is commonly achieved with photon-num-
ber-resolving detectors.
The output states containing mostly squeezing

after the beam splitter can be approximated to
jαeiϕ1 sin θ cos θ; ξ cos2 θi and jαeiϕ1 cos2 θ; ξ cos θ sin θi,
where jα; ξi ¼ D̂ðαÞŜðξÞj0i, D̂ is the displacement
operator, Ŝ is the squeezing operator. The exact state is
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entangled and the approximation is valid for θ ≪ 1. The
final output state is a displaced-squeezed vacuum state,
approximated as jψi ¼ jαθeiϕ1 ; ξi. Next, we show the
dependence of this final output state on the phase ϕ1 at
which squeezing and antisqueezing occurs. We calculate
the amplitude fluctuation hΔn̂i2 as a function of the phase
ϕ1 as

hΔn̂2i ¼ n̄α þ 2n̄αn̄s þ 2n̄s þ 2n̄2s

− 2 cos ð2ϕ1Þn̄α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄sð1þ n̄sÞ

p
; ð1Þ

which shows that the sub-shot-noise suppression happens
only in the presence of squeezed light. Here, n̄α represents
average leaked pump photons, and n̄s, the average number
photons in squeezed vacuum state.
In Fig. 1, we show the fluctuation in photon counts

hΔn̂2i as a function of ϕ1 for the output squeezed state and
compare it against the shot-noise limit hΔn̂2i ¼ n̄α þ n̄s,
where n̄s ¼ sinh2 r and r is the squeezing parameter. We
observe squeezing and antisqueezing for ϕ1 ¼ ϕs ¼ 0 and
ϕ1 ¼ ϕas ¼ π=2, respectively. This confirms that even
though almost all the photons are from the coherent light,
the overall nonclassical statistics are still preserved.
In Fig. 2(a), we present the analytical model of our

method to detect squeezed light using a camera. The
mixing of the squeezed and coherent light is modeled
by beam-splitter transformation with reflectivity θ. We
consider θ ∼ 10−2, so that we lose only a small amount
of squeezed light. After the beam splitter, the light is
incident on the camera. Since we focus on a single pixel,
the camera acts as a tunable attenuator LðηÞ of transmission

η. This conjecture is proven in the Supplemental Material
[31]. However intuitively, when looking on one pixel, the
rest of the light, incident on the other pixels, is lost. We look
at the statistics of the detected signal photons per pixel and
plot the first two moments of the photon counts against
each other, for ϕs ¼ 0 and ϕas ¼ π=2 where maximum
squeezing and maximum antisqueezing happens as noted
from Fig. 1.
For a coherent light state we know that hΔn̂2i ¼ hn̂i.

Therefore, the condition for squeezing is defined as
hΔn̂2i < hn̂i and antisqueezing hΔn̂2i > hn̂i as seen in
the Fig. 2(b). Since we have the first two moments for the
displaced-squeezed light state, the stage is now set to
extract the squeezing parameter.
Analytical results.—Next, we demonstrate the extraction

of squeezing and the amount of coherent light from
Fig. 2(b). The analytical expressions for the average photon
number and the variance per pixel is shown in Eq. (2).

FIG. 1. Phase dependent displaced-squeezed light. Plot of
photon-number fluctuation as a function of ϕ1. The constant
line represents the shot-noise limit. When the photon-number
fluctuation is below the shot-noise limit the field is squeezed. The
average number of photons in the pump beam is n̄pump ¼ 1010,
θ ¼ 10−2, the leaked amount of pump photons is n̄α ¼ jαθj2, the
average number of photons in squeezed vacuum generated is
n̄s ¼ 1. The values of ϕ1 represented by ϕas and ϕs represent
antisqueezing and squeezing, respectively.

( )

(a)

(b)

FIG. 2. Theoretical model and results (a) Building blocks of the
model as a two mode propagator. The squeezed light jξi, is mixed
with a strong coherent light jαeiϕ1i, on an unbalanced beam
splitter with reflectivity of θ ≪ 1. After tracing the pump mode,
the final output state can be approximated as jαeiϕ1θ; ξi.
The statistical properties of a single pixel of the camera are
simulated by an adjustable attenuation LðηÞ. (b) Parametric plot
of photon-number fluctuation and photon counts, of parameter η,
the transmission. The dotted curve represents the squeezing as
the variance in photon counts is less than the average photon
counts, (hΔn̂2i < hn̂i). The dashed curve shows antisqueezing
since the variance is greater than the average photon counts,
(hΔn̂2i > hn̂i). The solid curve represents the shot-noise limit
obtained from coherent light, (hΔn̂2i ¼ hn̂i).
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We plot the variance versus the average photon counts as a
function of the transmission η.

hn̂i ¼ ηðn̄α þ n̄sÞ;

hΔn̂2i ¼ 1

2
η½2n̄αð1þ n̄sÞ þ n̄sð2þ n̄sÞ

− 4ηn̄α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄sðn̄s þ 1Þ

p
cos 2ϕ1

þ n̄sð1þ 2n̄α þ 2n̄sÞð2η − 1Þ�: ð2Þ

We find the curve fit for ϕ1 ¼ ϕs ¼ 0 and
ϕ1 ¼ ϕas ¼ ðπ=2Þ, which are the values for squeezing
and antisqueezing, respectively, from Fig. 2(b), and extract
the values of n̄s and n̄α. The curve fit obeys the equation
hΔn̂2ðηÞi ¼ hn̂ðηÞi þ qhn̂ðηÞi2. Since we have two
unknowns we need two equations. Therefore, to be able
to extract n̄s and n̄α we use the coefficient q for both the
squeezing and antisqueezing curves, where q is given by

q ¼ 1

ðn̄α þ n̄sÞ2
½n̄sð1þ 2n̄α þ 2n̄sÞ

− 2n̄α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄sð1þ n̄sÞ

p
cos 2ϕ1�: ð3Þ

q < 0 is a sign of sub-Poissonian photon statistics and thus
q is a measure of quantum effect [36].
Next, we compare the sensitivity of obtaining n̄s using

our method with the homodyne method. In Fig. 3, we
sketch the homodyne and our setup. In our homodyne
scheme the signal is the average variance in the field
quadrature, hΔX̂ðϕ1Þ2i, and the noise is given by the
variance of the signal hΔðΔX̂ðϕ1Þ2Þ2i, which is the
variance of the variance in the field quadrature. For
Gaussian probability statistics there is a connection
between the second and fourth moment, where the latter
is twice the square of the former. This fact is also useful
experimentally where it is hard to measure the fourth
moment. Therefore, the sensitivity in the value of n̄s can be
extracted from homodyne detection as follows,

h½ΔX̂ðϕ1Þ�2i ¼
1

2
½2n̄s þ 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄sðn̄s þ 1Þ

p
cosϕ1�; ð4Þ

hðΔn̄sÞ2i ¼
h½ΔX̂ðϕ1Þ�2i2
j δh½ΔX̂ðϕ1Þ�2i

δn̄s
j2
; ð5Þ

hðΔn̄sÞ2i ¼ 2n̄sðn̄s þ 1Þ; ð6Þ

where the sensitivity is phase independent.
Similarly, we calculate the sensitivity of n̄s for our

method. Here, the n̄s information is encoded in the
curve-fit parameter q as shown in Eq. (3). First, we rewrite
q in terms of hn̂1ðηÞi and h½Δn̂1ðηÞ�2i using the curve fit
equation as

q ¼ h½Δn̂1ðηÞ�2i − hn̂1ðηÞi
hn̂1ðηÞi2

: ð7Þ

Using the error propagation we get

hΔq2i ¼
�

δq
δhn̂1ðηÞi

�
2

h½Δn̂1ðηÞ�2i

þ
�

δq
δh½Δn̂1ðηÞ�2i

�
2

hΔ½Δn̂1ðηÞ2�2i; ð8Þ

hΔn̄2si ¼
hΔq2i
j δq
δn̄s

j2 : ð9Þ

In the limit of n̄α ≫ n̄s; 1, the sensitivity of n̄s is the same as
the homodyne method,

hΔn̄2si ≈
4n̄4αn̄sð1þ n̄sÞ½2n̄s þ 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄sð1þ n̄sÞ

p �2
2n̄4α½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄sð1þ n̄sÞ

p � ð2n̄s þ 1Þ�2 ;

¼ 2n̄sðn̄s þ 1Þ; ð10Þ

where � stands for the squeezed and antisqueezed phases.
It is interesting to see that the noise in calculating n̄s is

the quantum noise of squeezed light state. Hence, from
Eqs. (4) and (10), we conclude that the camera method
performs as well as the widely used homodyne method for
squeezed light detection. We note that the sensitivity of
direct intensity measurement is also 2n̄sðn̄s þ 1Þ (without
including the detection efficiency). However, unlike the
other detection techniques where loss from detector effi-
ciency needs to be taken into account, our method is
simpler. We look at the photon statistics of one pixel at a
time, therefore, when looking at one pixel, the rest of the
light, incident on the other pixels, is lost. Hence, the effect
of loss is included in the nature of our detection scheme,
making our scheme independent of photon-detector
calibration [15]. This is a result of the different collection
efficiencies of the camera pixels which allows us to get
many different efficiencies with one shot of the camera.
Therefore, our camera method is quantum limited and is
applicable even in an environment of unknown loss, i.e., it

FIG. 3. Schematic diagrams of squeezed-light detector. (a) Bal-
anced homodyne detection, the common method of squeezed-
light detection. Here, the local oscillator (LO) enters along b̂ and
n̄LO ¼ 106. The squeezed light field enters along â and n̄s ¼ 1.
(b) Our proposed setup comprises field displacement and a
single-photon camera. PS, phase shifter; BS, beam splitter;
UBBS, unbalance beam splitter; BD, beam dumper; and CAM,
camera.
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does not require prior knowledge about the collection
efficiency.
Simulations.—In order to demonstrate our method

we simulate the experiment of measuring the squeezed
state with a camera. A detailed simulation procedure and
mathematical framework is described in the Supplemental
Material [31]. In short, a photon number is randomly
picked, according to the state photon statistics. The photons
are distributed to 32-by-32 camera pixels. After repeating
the simulation N times, the intensity and variance are
computed for each pixel. The variance can be plotted as a
function of intensity where each point in the plot is
represented by a different pixel (see Fig. S2 in the
Supplemental Material [31]).
To increase the precision of the results (without adding

more data), one can integrate or group pixels. It can be done
in many ways and here we choose to integrate over pixels
such that the first point is the first pixel, the second point
sums over the first two pixels, the third on three, and so on.
The last point sums over all of the pixels. By doing that, we
improved the fitting error and the results are ð−8.242�
0.001Þ × 10−7 and ð4.837� 0.001Þ × 10−6 for squeezed
[Fig. 4(a)] and antisqueezed [Fig. 4(b)] states, respectively.
The values are very close to the theoretical values of
−8.2842 × 10−7 and 4.8284 × 10−6, giving the values of
n̄α ¼ ð1.0065� 0.002Þ × 106 and n̄s ¼ 1.0098� 0.00045.
The slight deviation can be explained by the quasi-random-
number generator, which probably introduces correlations
in the random numbers, which in turn adds observed
nonstatistical noise to the results.
Figure 4(c) shows the precision (standard deviation, SD)

of the value q as a function of the number of runs.
The precision is improved as one over the square root of
the number of runs, as expected. For antisqueezing, the
precision is about five times worse than for squeezing. It is
a result of the increased spread in the photon statistics
which adds more noise to the simulations. Quantitatively,
the SD of the antisqueezing photon statistics is 5.8 larger

than the SD of the squeezing photon statistics [see Eq. (1)],
which coincides with the factor of 5 as seen in
Fig. 4(c).
Conclusion.—We have proposed a scheme to detect

single-mode squeezed light without using the homodyne
detection. We mix the squeezed light with a strong coherent
light field at an unbalanced beam splitter. The final state is a
displaced-squeezed vacuum state with a controllable phase
shift ϕ1. We demonstrate that the amount of squeezing can
be estimated from the first two moments of the photon
statistics obtained from the camera. We show that our
method does equally well compared to homodyne detec-
tion, and is quantum limited. Last, we carry out a numerical
simulation of our model to calculate the amount of
squeezing and compare with the analytical results. We
find that our numerical simulation results agree with the
analytical results.
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