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We consider the problem of local operations and classical communication (LOCC) discrimination
between two bipartite pure states of fermionic systems. We show that, contrary to the case of quantum
systems, for fermionic systems it is generally not possible to achieve the ideal state discrimination
performances through LOCC measurements. On the other hand, we show that an ancillary system made of
two fermionic modes in a maximally entangled state is a sufficient additional resource to attain the ideal
performances via LOCC measurements. The stability of the ideal results is studied when the probability of
preparation of the two states is perturbed, and a tight bound on the discrimination error is derived.
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The very concept of quantum information theory requires
encoding distinguishable pieces of information on quantum
states. In the simplest instance of encoding of classical
information, the decoding procedure corresponds to the
widely studied task of quantum state discrimination [1–8].
In turn, the state discrimination task has been extensively
studied in the scenario where states are shared by distant
agents that are only allowed to use local operations and
classical communication (LOCC) [9–11]. These tasks are
now exhaustively understood in the quantum realm.
On the other hand, real physical systems are bosons or

fermions, and the latter are ruled by a theory that is a slight
variation of the standard quantum one. The study of infor-
mation processing in fermionic theory has then various
reasons, that are both practical and fundamental [12]. Of
particular importance is establishing analogies anddifferences
between quantum and fermionic implementation of specific
information processing tasks. For example, it is known that
quantum and fermionic computation are equivalent, meaning
that every quantum algorithm can be efficiently mapped to a
fermionic one, and vice versa [12]. This implies, e.g., that
fermionic processes are efficiently simulated by quantum
computers [13]. In many other respects, however, the two
theories present significant differences [14–16].
In the present Letter, we study the task of LOCC state

discrimination in the fermionic theory. We show that,
unlike the quantum case, in the typical situation LOCC
discrimination is strictly suboptimal. We also derive con-
ditions where ideal discrimination performances can be
achieved via a LOCC protocol. These conditions are very
sensitive to prior information about the probability of
occurrence of the two states. Therefore, we study the
behavior of LOCC protocols in the presence of a small
perturbation of the ideal conditions. Moreover, we show
that a pair of fermionic systems in a maximally entangled
state is a sufficient resource in addition to LOCC to achieve
discrimination performances equivalent to the optimal one.

We briefly introduce the fermionic quantum theory as the
theory dealing with systems made of local fermionic modes
[12,14,15,17,18]. A fermionic mode represents the counter-
part of a qubit in the quantum theory and can be either
empty or occupied by a single “excitation.” The states of
fermionic systems satisfy the parity superselection rule
[12,16,18–23], i.e., superpositions of vectors having even
or odd excitation numbers are forbidden. The latter can be
derived as a consequence of the assumption that the
elements of the fermionic algebra are Kraus operators of
local fermionic transformations [18]. The generators of
the fermionic algebra φi, i running over arbitrary sets of N
modes, fulfill the canonical anticommutation relations
fφi;φ

†
jg ¼ δij and fφi;φjg ¼ fφ†

i ;φ
†
jg ¼ 0 ∀ i; j. Once

we define the vacuum state jΩi as the common eigenvector
of operators φ†

iφi with null eigenvalues, the fermionic
operators enable us to define the Fock states as jn1…nNi ≔
ðφ†

1Þn1 � � � ðφ†
NÞnN jΩi and the antisymmetrized Fock space

F through the linear combination of all Fock states. We
label with the lowercase letters e, o those sectors of the
Fock space featuring even and odd parity, respectively. The
Jordan-Wigner isomorphism [24–26] is a crucial tool to
handle the transformations and informational protocols in
fermionic theory. Indeed, it maps nonlocally the fermionic
operator algebra to an algebra of transformations on qubits,
thus allowing us to proceed with the usual quantum
notation.
The orthogonal case.—In quantum theory, we may

perfectly discriminate between any two orthogonal states
jψi, jϕi of a bipartite system AB through LOCC measure-
ments [9]. We note that the most general case of a quantum
measurement is represented by a positive-operator valued
measure (POVM), i.e., a collection of effects (positive
operators 0 ≤ S ≤ I) that sum to the identity operator I. A
necessary condition for a POVM to represent a LOCC
measurement is to be separable (SEP). The effect S is
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separable if there exists some operators 0 ≤ Ai; Bi ≤ I such
that S ¼ P

i Ai ⊗ Bi, and a POVM represents a separable
measurement if it is exclusively made of separable effects.
Moreover, we recall that LOCC POVMs are a proper subset
of SEP POVMs [27]. In the following we will use the
acronyms LOCC and SEP to denote the corresponding
subsets of POVMs.
We now give a sketchy summary of the result of Ref. [9].

Every pair of orthogonal bipartite pure states can then be
written as

jψi ¼
Xn

i¼1

jiiAjηiiB; jϕi ¼
Xn

i¼1

jiiAjνiiB; ð1Þ

where fjiiAg is a suitable orthonormal basis in the Hilbert
space of Alice’s system, and fjηiiBg and fjνiiBg are sets of
vectors in Bob’s Hilbert space that are pairwise orthogonal,
i.e., hηijνii ¼ 0. Alice has to measure her system in the
given basis and send the outcome to Bob, who in turn
manages to locally discriminate between two orthogonal
states, thus inferring the correct result. Existence of the
decomposition in Eq. (1) was shown in Ref. [9].
We follow here a strategy similar to the quantum one in

order to distinguish between two pure orthogonal states
jψi; jϕiof a bipartite fermionic system. First of all, we notice
that whenever the two preparations have different parity,
e.g., jψi ∈ F eðABÞ and jϕi ∈ F oðABÞ, it is always possible
to perfectly discriminate between the two just through local
measurements. Indeed, Alice and Bob have to locally
measure the parity of their subsystems and if their outcomes
match, then the provided statewas even, otherwise it was the
odd one. The nontrivial case then is that of two pure states
with the same parity. Since the even and odd sector are
equivalent under LOCC, it is not restrictive to focus on even
vectors only. We introduce the following convenient nota-
tion for the even vectors jψi; jϕi ∈ F eðABÞ,

jψi ¼ jψEi þ jψOi;
jϕi ¼ jϕEi þ jϕOi; ð2Þ

and recalling the decomposition in Ref. [9], we decompose
jψEi ¼

P
n
i¼1 jeiiAjηei iB, jψOi ¼

P
n
i¼1 joiiAjηoi iB, jϕEi ¼P

n
i¼1 jeiiAjνei iB, jϕOi ¼

P
n
i¼1 joiiAjνoi iB, where fjeiig,

fjoiig are Alice orthonormal bases of even and odd vectors,
respectively, while fjηxi iBg, and fjνxi iBg, for x ¼ e, o are
Bob vectors resulting from the decomposition. In general,
the latter are not normalized and hηxi jνxi iB ≠ 0. We may
indicate with the capitalized letters E or O those entities
pertaining to the E and O spaces of F eðABÞ, i.e., those
subspaces where the parities of Alice’s and Bob’s subsys-
tems are both even or odd, respectively. E.g., the E part of
vector jψi is defined as jψEi ¼

P
n
i¼1 jeiiAjηei iB, whereas

the O part is jψOi ¼
P

n
i¼1 joiiAjνoi iB. The orthogonality

condition hψ jϕi ¼ 0 generally reads

hψEjϕEi þ hψOjϕOi ¼ 0: ð3Þ

Let us consider as the first case the scenario where the
two preparations have only one component. Then they have
components either in complementary subspaces, e.g.,
jψi ¼ jψEi and jϕi ¼ jϕOi, and it is trivially possible to
discriminate via LOCC by measuring the local parities, or
in the same subspace, e.g., jψi ¼ jψEi and jϕi ¼ jϕEi. In
the latter case the protocol reduces to the quantum one.
Indeed, Alice selects the right basis fjeiig and lets Bob
perfectly discriminate between jηei i and jνei i, which are now
orthogonal thanks to the result of Ref. [9]. Moreover, as
proved in Ref. [18], product POVMs in the Jordan-Wigner
representation correspond to LOCC fermionic POVMs.
As the second case, we consider the situation where only

one component out of the four jψEi, jψOi, jϕEi, jϕOi is
null. Perfect discrimination is implementable through
LOCC in this case as well. Let us take for instance the
vectors jψi ¼ jψEi þ jψOi, and jϕi ¼ jϕOi; Alice and Bob
firstly measure the parity of their subsystem and if the
outcome is even, they know for sure that the system has
been prepared in the state jψi. Otherwise, the state after the
measurement is either jψOi=kψOk or jϕOi, and the above
strategy for the first case applies.
In the most general case all four components are non-

null. If the two E and O parts are orthogonal—that is when
hψEjϕEi ¼ hψOjϕOi ¼ 0—Alice and Bob can measure
locally the parity of their systems, thus obtaining the
post-measurement states jψ 0i ¼ jψEi=kψEk and jϕ0i ¼
jϕEi=kϕEk if the outcomes are both even, jψ 0i ¼
jψOi=kψOk and jϕ0i ¼ jϕOi=kϕOk if the outcomes are
both odd. Consequently, they reduced to the first case.
There is one situation left fulfilling condition (3), i.e.,

when hψEjϕEi ≠ 0 and hψOjϕOi ≠ 0. This case exhibits the
main differencewith respect to quantum theory. Consider for
instance the states 1=

ffiffiffi
2

p ðj00iAj00iB � j01iAj01iBÞ. In this
case, the decompositions in Eq. (1) involves bases fjηiiBg
and fjνiiBg, where superpositions forbidden by the fer-
mionic superselection rule appear. Indeed, one has i ¼ � and

j�iA ≔
1
ffiffiffi
2

p ðj00i � j01iÞ;

jη�iB ¼ jν∓iB ≔
1
ffiffiffi
2

p ðj00i � j01iÞ:

The last case can thus not be treated by straightforwardly
applying the quantum strategy of Ref. [9]. The following
theorem summarizes what we discussed so far, and shows
that it is not possible to perfectly discriminate two states
with hψEjϕEi ≠ 0 and hψOjϕOi ≠ 0 through POVMs in
SEP, thus neither by means of LOCC.
Theorem 1. Let jψi and jϕi be two pure, normalized

and orthogonal states. Then the following statements are
equivalent: (i) The even and odd parts are separately
orthogonal; i.e.,
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hψEjϕEi ¼ hψOjϕOi ¼ 0: ð4Þ

(ii) The two states are perfectly discriminable through
LOCC. (iii) The two states are perfectly discriminable
through SEP.
Proof.—It is trivial to see that ii ⇒ iii, whereas we have

already shown above that i⇒ ii thanks to Ref. [9]. We now
focus on the implication iii ⇒ i and wonder under what
conditions one has

max
S∈SEP

Tr½ðjψihψ j − jϕihϕjÞS� ¼ 1; ð5Þ

namely, the condition for perfect discriminability via SEP.
The expression in Eq. (5) clearly involves only the
component of S supported on the even subspace
F eðABÞ. Now, a necessary condition for a fermionic effect
S supported on F eðABÞ to be SEP is that S ¼ SE þ SO,
where SE and SO have their support on the E space and O
space, respectively (see the Supplemental Material [28]).
Consequently, the condition in Eq. (5) is equivalent to

Tr½ðjψ̃Eihψ̃Ej − jϕ̃Eihϕ̃EjÞSE� ¼ 1;

Tr½ðjψ̃Oihψ̃Oj − jϕ̃Oihϕ̃OjÞSO� ¼ 1; ð6Þ

for S ¼ SE þ SO representing an effect in SEP, jψ̃Ei, jϕ̃Ei,
jψ̃Oi, jϕ̃Oi being normalized vectors such that jψ̃Ei ¼
jψEi=kψEk, etc. Thus, it is possible to perfectly discrimi-
nate the two states through separable effects only if the E
and O parts are perfectly discriminable separately, as
required in Eq. (4).
Ancilla assisted discrimination.—We now show that one

can overcome the limits of Theorem 1 by providing the two
parties with an ancillary system prepared in a suitable pure
entangled state jωi. Let us take

jωiAB ≔ aj00i þ bj11i for a; b ≠ 0; ð7Þ

and consider the task of discriminating the new vectors
jψ 0i ≔ jψi ⊗ jωi and jϕ0i ≔ jϕi ⊗ jωi. In particular, we
will see that only a maximally entangled ancillary state—
i.e., with jaj2 ¼ jbj2 ¼ 1=2—enables perfect discrimina-
tion between every two pure fermionic states, regardless of
condition (4).
Theorem 2. It is always possible to perfectly discrimi-

nate between every two pure, normalized, and orthogonal
preparations jψi and jϕi with LOCC and an ancillary
system in a pure maximally entangled state

jωiAB ¼ 1
ffiffiffi
2

p ðj00i þ eiφj11iÞ; φ ∈ ½0; 2πÞ: ð8Þ

Moreover, the same does not hold if the ancillary state is
not maximally entangled.

Proof.—We show here a sketch of the proof, the full
rigorous derivation being given in the Supplemental
Material [28]. Let us consider the states

jψ 0i ¼ jψi ⊗ jωi ¼ jψ 0
Oi þ jψ 0

Ei;
jϕ0i ¼ jψi ⊗ jωi ¼ jϕ0

Oi þ jϕ0
Ei;

with jψ 0
Ei¼ajψE00iþbjψO11i, jψ 0

Oi¼bjψE11iþajψO00i,
jϕ0

Ei¼ajϕE00iþbjϕO11i, and jϕ0
Oi¼bjϕE11iþajϕO00i,

and evaluate for jaj2 ¼ jbj2 ¼ 1
2
the scalar products

hψ 0
Ejϕ0

Ei ¼ hψ 0
Ojϕ0

Oi ¼
1

2
hψ jϕi ¼ 0:

The vectors jψ 0i and jϕ0i do satisfy Eq. (4), even if jψi and
jϕi may not. Thus, we are now able to apply the protocol of
Theorem1 to the new states as shown above. Condition (8) is
also necessary for perfect discrimination, as shown in the
Supplemental Material [28].
Optimal discrimination.—If the orthogonality condition

hψ jϕi ¼ 0 is relaxed, the two states are clearly not perfectly
discriminable. Hence, one looks for the protocol which
minimizes the error probability—i.e., the probability of
wrong detection. For this purpose, it is necessary to
introduce our prior probabilities for the two states, given
by the distribution fp; qg. In this case, the error probability
reads

Perr ≔ Tr½pjψihψ jΠϕ þ qjϕihϕjΠψ �;
where fΠψ ;Πϕg is the binary POVM describing the dis-
crimination protocol. We note that by definition the POVM
satisfies Πψ ;Πϕ ≥ 0 and Πψ þ Πϕ ¼ I. In the quantum
case, the optimal discrimination strategy corresponds to
the POVM fjþihþj; j−ih−jg diagonalizing the operator

Δ ≔ pjψihψ j − qjϕihϕj ¼ λþjþihþj þ λ−j−ih−j; ð9Þ

where λþ>0, λ−<0 are the eigenvalues ofΔ, and hþj−i¼0
(see Refs. [1,2]). The corresponding error probability is [2]

Perr ¼
1

2
ð1 − kΔk1Þ: ð10Þ

In Ref. [10], the authors observe that optimal discrimination
through LOCC of jψi and jϕi with prior probabilities p and
q, respectively, is equivalent to perfect LOCC discrimination
between jþi and j−i (see also Ref. [2]), thus reducing the
optimal case to an instance of perfect discrimination. While
the latter is always possible in quantum theory,weknow from
Theorem 1 that in fermionic theory this is true only if the
eigenvectors satisfy

hþEj−Ei ¼ hþOj−Oi ¼ 0: ð11Þ

Otherwise, by Theorem 2 perfect LOCC discrimination
requires a maximally entangled ancilla. As for the perfect
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discrimination case, also the conditions for optimal LOCC
discrimination in fermionic theory differ from the quantum
ones only when the E andO components of jþi and j−i are
all nonzero, and hþEj−Ei; hþOj−Oi ≠ 0. For the latter case,
we now prove a necessary and sufficient condition for
achievability of optimal discrimination with LOCC that does
not require diagonalization of Δ.
Theorem 3. Let ρ ¼ pjψihψ j and σ ¼ qjϕihϕj be two

pure and subnormalized states for p; q > 0 and pþ q ¼ 1.
They are optimally discriminable through LOCC if and
only if they satisfy

½Δ; PE� ¼ 0; ð12Þ

where Δ is defined in Eq. (9) and PE is the projector onto
the E subspace.
Remark.—Let us consider the projectors Pe and PO

on the even subspace F eðABÞ and O subspace of system
AB, respectively, to observe that Pe ¼ PE þ PO and
½Δ; Pe� ¼ 0. Hence, Eq. (12) is fulfilled if and only if
½Δ; PO� ¼ 0 so the two expressions are interchangeable.
Proof.—Since optimal discrimination between jψi and

jϕi is equivalent to perfect discrimination between jþi and
j−i, by Eq. (11) optimal discriminability of the states jψi
and jϕi by LOCC is equivalent to the condition

hþjPEj−i ¼ hþjPOj−i ¼ 0: ð13Þ

Now, taking the difference of the first two members of
Eq. (13), we can then express the LOCC-discriminability
condition through the single expression

hþjðPE − POÞj−i ¼ 0: ð14Þ

Indeed, since PO ¼ Pe − PE, Eq. (14) is equivalent to the
requirement that the restriction of the projector PE onto the
space Spanfjψi; jϕig is diagonal in the basis fjþi; j−ig.
The operators Δ and PE are simultaneously diagonalizable
if and only if ½Δ; PE� ¼ 0. Equation (12) is then equivalent
to attainability of optimal discrimination between the two
states ρ and σ via LOCC.
We may wonder what happens when condition (12) is

not satisfied. As we show in the next theorem, the best
discrimination strategy through SEP corresponds to meas-
uring in the basis of eigenvectors of ΔE and ΔO, defined as
the restriction of the operator Δ onto the E and O
subspaces, respectively. Such a strategy is LOCC.
Theorem 4. Let ρ ¼ pjψihψ j and σ ¼ qjϕihϕj be two

pure subnormalized states for p; q > 0 and pþ q ¼ 1. The
optimal SEP discrimination protocol is locally implement-
able through LOCC and its error probability reads

PSEP
err ¼ PLOCC

err ¼ 1

2
ð1 − kΔE þ ΔOk1Þ; ð15Þ

where ΔE ¼ PEΔPE and ΔO ¼ POΔPO.

Proof.—This result can be obtained considering that

PSEP
err ¼ p − max

Πψ∈SEPðABÞ
Tr½ΠψΔ�;

where Πψ must be of the form Πψ ¼ ΠE
ψ þ ΠO

ψ in order to
comply with the separability condition, as observed in the
proof of Theorem 1. The result then follows.
The above result allows us to treat the case where we are

restricted only to local measurements and Eq. (12) does not
hold for the preparations ρ, σ. Once we are given the pure
states jψi and jϕi, the condition for optimal LOCC
discrimination of Eq. (12) is fulfilled either for the
vectors laying in the E or O space, i.e., ½jψihψ j; PE� ¼
½jϕihϕj; PE� ¼ 0, or if the probability p satisfies

½jψihψ j; PE� ¼
1 − p
p

½jϕihϕj; PE�: ð16Þ

Condition (16) can be satisfied by a unique value of the
prior probability p, unless ½jψihψ j; PE� ¼ ½jϕihϕj; PE� ¼ 0.
However, we now show that optimal LOCC discrimination
can achieve the performances of unconstrained protocols,
provided that two ancillary fermionic systems are used in a
maximally entangled state. As discussed above, indeed, the
problem of optimal discrimination between two pure states
reduces to that of the orthogonal vectors jþi; j−i in Eq. (9).
Considering Theorem 2, we know that orthogonal states
can be perfectly discriminated via LOCC provided a
maximally entangled ancillary system is available. These
two observations immediately lead to our last result.
Theorem 5. Let ρ ¼ pjψihψ j and σ ¼ qjϕihϕj be two

pure subnormalized states for p; q > 0 and pþ q ¼ 1. It is
always possible to optimally discriminate between the two
preparations via LOCC if we use an ancillary system in a
pure maximally entangled state.
Equation (16) introduces a strict condition on the prior

probability of the preparations, which are always subject to
noise. We show hereafter that if we introduce a small
perturbation ϵ on the preparation probabilities of pair of
states satisfying Eq. (12), the discrimination error proba-
bility increases at most linearly in ϵ with respect to the
appropriate optimal LOCC protocol. Thus, we map p ↦
pþ ϵ and attain

Δϵ ≔ ðpþ ϵÞjψihψ j − ðq − ϵÞjϕihϕj
¼ Δ0 þ ϵðjψihψ j þ jϕihϕjÞ;

where ½Δ0; PE� ¼ 0. At this stage, we estimate the error
difference between the optimal POVM P0 ≔ fΠψ ;Πϕg for
ϵ ¼ 0, which is LOCC thanks to Theorem 3, and the
LOCC-optimal POVM for the perturbed case Δϵ. The error
increases as δPerr ≔ PerrðP0jΔϵÞ − PLOCC

err ðΔϵÞ ≥ 0, where
PerrðP0jΔϵÞ¼Tr½ðpþϵÞjψihψ jΠϕþðq−ϵÞjϕihϕjΠψ � and
PLOCC

err ðΔϵÞ ¼ 1
2
ð1 − kΔϵ

E þ Δϵ
Ok1Þ as in Eq. (15).
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Accordingly manipulating the expression for δPerr one
obtains

δPerr ≤ kjϵj þ gϵ; ð17Þ

where k, g ≥ 0 are suitable constants depending only on
jψi, jϕi. The former inequality is as tight as possible: let us
take indeed the states jψi ¼ 1=

ffiffiffi
2

p j00i þ 1=
ffiffiffi
2

p j11i and
jϕi ¼ αj00i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
j11i, where α ≔ ð1= ffiffiffi

2
p þ ξÞ, and ξ

belongs to a neighborhood of zero. In such a case, we have
numerically assessed that the error difference δPerr exhibits
a corner in ϵ ¼ 0 as ξ → 0 (more details can be found in the
Supplemental Material [28]).
We also investigate the performance of the optimal

LOCC protocol for ϵ ≠ 0 in the neighborhood of a prior
probability p satisfying condition (16), by comparing its
efficiency to that of the optimal unconstrained (i.e.,
entanglement-assisted LOCC) POVM. Thus we estimate
δP0

err ≔ PLOCC
err ðΔϵÞ − PerrðΔϵÞ ≥ 0 by means of Eqs. (10)

and (15), obtaining

δP0
err ≤ κjϵj; ð18Þ

for a suitable κ ≥ 0, thanks to the triangle inequality.
We remark that, in the case of a mismatch in the

assessment of the prior probability p, also for uncon-
strained optimal discrimination—coinciding with ancilla-
assisted LOCC—one has the same bound as in Eq. (17),
with possibly different constants k and g. This feature,
however, must not be considered as an artifact of fermionic
theory. Indeed, the technique used to derive the bound in
Eq. (17) is very general and leads to the same behavior in
the quantum case as well.
Discussion.—As in the quantum case, discrimination

with separable and LOCC POVMs in the fermionic case
achieve the same performances. Unlike in quantum theory,
on the other hand, in fermionic theory ideal state discrimi-
nation through LOCC is subject to non-trivial conditions.
In this Letter, we derived the conditions under which
LOCC discrimination achieves the ideal performances of
unconstrained discrimination protocols. However, in the
fermionic case, ancilla-assisted LOCC protocols achieve
ideal discrimination. One has to remark, though, that this is
the case only for maximally entangled ancillary states. The
former statement unequivocally determines the amount of
entanglement required for such a task. We finally studied
the behavior of optimal protocols—which depend on prior
probabilities of the states to be discriminated—if the
prior conditions are subject to perturbation. A remarkable
instability is observed, corresponding to a corner point in
the curve representing the error probability excess due to
nonoptimized POVMs. We stress that the latter pheno-
menon is not exclusive of fermionic theory, as it occurs also
in the quantum case.
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