
 

Programming Impulsive Deformation with Mechanical Metamaterials

Xudong Liang and Alfred J. Crosby *

Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA

(Received 23 March 2020; accepted 17 August 2020; published 2 September 2020)

Impulsive deformation is widely observed in biological systems to generate movement with high
acceleration and velocity. By storing elastic energy in a quasistatic loading and releasing it through an
impulsive elastic recoil, organisms circumvent the intrinsic trade-off between force and velocity and
achieve power amplified motion. However, such asymmetry in strain rate in loading and unloading often
results in reduced efficiency in converting elastic energy to kinetic energy for homogeneous materials.
Here, we demonstrate that specific internal structural designs can offer the ability to tune quasistatic and
high-speed recoil independently to control energy storage and conversion processes. Experimental
demonstrations with mechanical metamaterials reveal that certain internal structures optimize energy
conversion far beyond unstructured materials under the same conditions. Our results provide the first
quantitative model and experimental demonstration for tuning energy conversion processes through
internal structures of metamaterials.
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Impulsive deformation is universally adopted in biologi-
cal systems to circumvent the force-velocity trade-off and
exceed the power limitation of muscles [1–4]. In these
systems, organisms store elastic energy in components,
which serve as springs, and subsequently release this
energy in a triggered recoil event. For example, the mantis
shrimp powers rapid movements of its appendages (peak
speed of 20 m=s) via a release of elastic energy stored in
the exoskeleton [5,6], legless larvae jump 28 times their
body length through a rapid release of elastic energy stored
slowly through an internal pressurization process [7], and
Venus flytrap leaflets couple the slow hydraulic storage of
elastic energy with a snap instability to capture flying
insects [8,9]. The impulsive deformation in such biological
systems results from asymmetry in loading and unloading,
where elastic energy is stored through quasistatic conditions
and is quickly released through a fast, dynamic recoil [Fig. 1
(a)]. These impulsive movements in nature are intrinsically
controlled via material properties and structures. Similar
approaches have been adopted in engineering systems,
ranging from archery bows [10] to antibody-powered
DNA nanomachines [11]. However, a systematic under-
standingof how structure interplayswithmaterials properties
has remained elusive for elastic recoiling structures.
Traditionally, the dynamics of recoil is linked to the

coupling between the inertial and elastic properties of a
system [12–14], with the recoil velocity determined by the
material wave speed [15,16]. Accordingly, synthetic impul-
sive devices are typically tuned through the choice of the
constituent material. For applications where immense
power and dynamic range, hence large strains, are required,
this traditional tuning approach often leads to diminishing
returns. Most synthetic materials experience decreased

elastic to kinetic energy conversion efficiency due to
internal intrinsic dissipative mechanisms [17–19], which
are amplified at high strain rates. In nature, where composi-
tional variation is limited, it is hypothesized that structural
variation can offer pathways for enhanced conversion
efficiency [20–22], allowing impulsive recoil to be an
advantageous adaptation for many organisms.
In this Letter, we report a strategy to overcome intrinsic

limitations in impulsive deformation in homogeneous
materials by utilizing mechanical metamaterials that medi-
ate mechanically derived deformations, stresses, and
energy with periodically arranged building blocks [23].
A rich set of wave dynamics, like transition waves [24] and
elastic vector solitons [25,26], have been discovered in
metamaterials where different internal displacement modes
occur simultaneously. Here, we reveal through high-speed
imaging how sequential internal displacements associated
with impulsive deformation control fast motion and energy
dissipation in metamaterials.
The mechanical metamaterials are composed of a net-

work of plates connected by thin ligaments [Fig. 1(b)]. The
internal structures are characterized as orthogonally aligned
pores with semiminor and semimajor axes a0 and b0,
respectively, and width of the necks between adjacent pores
w0. The representative unit used to describe the pore
geometry [inset, Fig. 1(b)], has a length L0 ¼ a0þ
b0 þ w0, with a pore aspect ratio ar ¼ a0=b0. The meta-
materials are stretched with a global strain ε ¼ ΔL=Ly,
where Ly and ΔL are the initial length and tip displace-
ment, respectively. Ligaments respond to the global strain
with a bending first, changing the shapes of the pores, and
then switch to stretching at larger strain, with a2 and b2
being the semiminor and semimajor axes that depend on the
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global strain [27,28]. We neglect the change of ligament
thickness with strain given that its variation is slight
compared to other dimensions in metamaterials
(Supplemental Material [29]).
The role of structure in energy storage and strain

distribution was measured under quasistatic loading. The
local strain is measured through the change in curvature of
the ligament in bending and the change in length for the
stretching ligament. The global strain required to change
the ligament from bending to stretching is measured as the
critical strain εc (Supplemental Material [29]). In Fig. 2(a),
the experimentally measured ligament strain is plotted
against the global strain, showing a transition of strain
attenuation (εl=ε < 1) to strain concentration (εl=ε > 1) as
the localized displacement changes from bending to
stretching. The localized displacements also control the
stiffness of the metamaterials (k), as confirmed experimen-
tally [Fig. 2(b)]. The counterrotating motion leads to a
compliant response in a metamaterial with elliptical pores
(ar < 1), where the thin ligaments act as a slender torsional
spring. The stiffness of near-circular-pore metamaterials
(ar ∼ 1) is governed by ligament stretching [27,32,33]. The
dependence of stiffness upon pore aspect ratios contrasts to
cellular solids with randomly positioned pores [29,34]. In

addition, the stiffness continues decreasing after the liga-
ment undergoes stretching due to the pore shape develop-
ment with global strain [27].
The role of structure on energy release is evident in the

recoilingmetamaterials with circular (a0 ¼ b0) and elliptical
(a0 ¼ 0.125b0) pores, as captured with a high-speed camera
(Photron Fastcam SA3) at 20 000 fps [Fig. 3(a)]. At time
t ¼ 0 ms, recoiling initiateswith an elasticwave propagating
along the y direction from a vertically hung sample without
any external planar guiding constraints. The deformation in
the circular-pore metamaterial is manifested by translational
retraction of the ligaments, while the deformation of the
elliptically structured sample is dominated by the rotation of
the interconnecting plates (Videos S1 and S2, Supplemental
Material [29]). Out-of-plane bending is suppressed during
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FIG. 1. (a) Asymmetric loading and unloading in jumping larvae (adapted with permission from Journal of Experimental Biology [7])
and Venus flytrap leaflets (adapted from [9]. Copyright (2011) National Academy of Sciences). (b) Mechanical metamaterials to
program impulsive deformation.
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FIG. 2. (a) Maximum local strain in the ligaments in stretching.
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FIG. 3. (a) High-speed images of the elastic recoiling of
metamaterials at a strain of 0.25. Scale bar, 5 mm. (b) The
positions of plates under elastic recoiling. (c) The normalized
recoil velocity as a function of the global strain.
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recoil as the thickness of metamaterials (h) is much larger
than ligament width, h ∼ 3w0.
We tracked the position of the plates with a marker

positioned at the center (Supplemental Material [29]). In
Fig. 3(b), the scaled positions corresponding to the color
markers in Fig. 3(a) are plotted against the recoiling time.
The plates in metamaterials recoil with a constant recoil
velocity V, which is the maximum slope in the measured
displacement-time curves in Fig. 3(b). The metamaterial
with the circular pores recoils around 3 times faster than the
one with the elliptical pores.
To establish the relation between the recoil velocity and

internal structure, we compared the recoil velocity of
metamaterials with different pore shapes [Fig. 3(c)]. The
recoil velocity in the strip is dictated by the sound speed in
zero-strain limit c0 and the applied strain ε,V=c0¼ ε=ð1þ εÞ
[14,16]. The recoil velocities of metamaterials deviate
significantly from that of a strip and decrease significantly
when the pore shape changes from circular to elliptical,
indicating that the internal structure is important in control-
ling the recoil velocity.
The local displacements in the recoiling metamaterial are

manifested as bending and stretching of the ligaments and the
rotation and translation of the plates. The rotation angle is
zero for circular pores [Fig. 4(a)] and, for elliptical pores,
increases until reaching a maximum rotation angle θc at a

critical strain εc (Fig. S5, SupplementalMaterial [29]).Given
that the recoil displacement in each plate due to rotation is
about Ltð1 − cos θÞ, where Lt is the length between the
center of ligaments, the recoil velocity is proportional to
1 − cos θ at ε < εc [Fig. 4(a)]. To describe the structural
control of this rotational recoil velocity Vθ, we consider the
metamaterial as a series of rotating squares with rotations
propagating atwave speed cθ. Over a period tr, a plate rotates
an angle θ, and the wave passes nθ plates, nθ ¼ cθtr=Lt

[Fig. 4(c)]. Thus, Vθtr ¼
Pnθ

k¼1 Lt½1 − cosðkθ=nθÞ�, and

Vθ ¼ αθcθð1 − cos θÞ; ð1Þ

where αθ is a geometrically defined constant (see
Supplemental Material [29]) of value typically less
than unity.
For ε > εc, the recoil velocity increases, even though no

further rotation is possible. At larger strains, the metama-
terial recoils like a strip, with a strain ε − εc. The proposed
mechanism is confirmed in Fig. 4(b) by plotting the
rescaled recoil velocity ðV − VcÞ=c0 against the strain ratio
ðε − εcÞ=ð1þε − εcÞ. We adopt Vc as the maximum recoil
velocity due to rotation [highlighted in red in Fig. 4(a)]
from experiments. Defining Vu as the recoil velocity
contributed by stretching, we have

(a) (b) (c)

(d) (e)

FIG. 4. (a) The recoil velocity depends on the rotational angle when ε < εc. Inset: recoil with rotational displacements. (b) When
ε > εc, the recoil velocity is consistent with the strain ratio. Inset: recoil with stretching displacements. (c) Schematic of the plates with
decreasing rotational angle in recoil. (d) Plate-chain model of the mechanical metamaterial. (e) Recoil velocities predicted by the model
are compared with experimental results.
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Vu ¼ cu
ε − εc

1þ ε − εc
: ð2Þ

The slopes of the recoil velocities in Figs. 4(a) and 4(b)
are αθcθ=c0 ∼ 0.6 and cu=c0 ∼ 0.8, respectively, indicating
that the internal displacements propagate with a wave speed
differing from the material sound speed c0.
To confirm this reduced understanding and to generalize

the phenomena for different pore shapes, we derived a
model that represents the metamaterial as a series of square
rigid plates connected by flexible beams [Fig. 4(d)].
Building upon the free energy of the metamaterial in recoil
and approximating the discretized field (un and θn) with a
second-order expansion (Supplemental Material [29]), the
governing equations of motions are

∂2u
∂t2 − βω2

0L
2
1

∂2u
∂y2 ¼ 0; ð3Þ

∂2θ

∂t2 − ðα − 1Þω2
0L

2
1

∂2θ

∂y2 þ 8ω2
0θ ¼ 0; ð4Þ

where lp and lb are the diagonal lengths of the plates and
the length of beams, respectively, and L1 ¼ lp þ lb.
Additionally, α ¼ Cs½1þ ðlp=lbÞ�2=4Cb, β ¼ klJ=mCb,
and ω2

0 ¼ Cb=J, where kl, Cb, and Cs are the stretching,
bending, and shearing stiffness of the beam, respectively;m
and J are the mass and moment of inertia of the plates,
respectively. The length and stiffness of the beam are
functions of the global strain, determined by the deforma-
tion in the ligament. Further details are found in the
Supplemental Material [29].
During the recoil of metamaterials, both the stretching and

rotational displacement are activated, and the recoil velocity
is V ¼ Vu þ Vθ. The wave speeds of the stretching and
rotational displacements are predicted byEqs. (3) and (4).We
also predict the critical strain εc based on the metamaterial
pore aspect ratio via a kinematic model (Supplemental
Material [29]). In Fig. 4(e), we plot the recoil velocity for
pores with aspect ratio ar ranging from 0 to 1 and find good
agreement with experiments. The recoil velocity monoton-
ically increases with ar for all strains, as the stiffness and the
corresponding strain energy increases with ar. When ε < εc,
the metamaterial only undergoes rotational displacement in
recoil; when ε > εc, the metamaterial recoils with transla-
tional displacements first, followed by rotation. The sequen-
tial unloading allows for themodulation of the recoil velocity
with internal structures.
Most synthetic materials experience intrinsic dissipation

that is amplified at high strain rates [17–19]. In the elastic
recoil, the strain energy stored in the quasistatic loadingWs
is not fully converted to kinetic energy in recoil,
Wk ¼ 1

2
mV2. For a nonstructured strip, the energy con-

version ratioWk=Ws decreases with the global strain [Fig. 5
(a)]. The dissipation is amplified at high strain, as con-
firmed in the inset of Fig. 5(a), where the decay of Wk=Ws

with the strain (1þ ε) is of the order −2 [35]. For
metamaterials, the dissipation is nonmonotonic with
respect to the global strain and depends on the pore aspect
ratio, showing an optimized value featuring small ar.
To demonstrate that this optimized enhanced efficiency

is programmed by the metamaterial stiffness and local
displacements, rather than other potential sources of dis-
sipation (e.g., friction during release), we plot the energy
conversion ratio predicted by our model in Fig. 5(b).
Similar to the trend observed in experiments, our model
indicates a nonmonotonic trend of energy conversion ratio
in metamaterials with the presence of rotational displace-
ments. An optimized enhanced efficiency also features
smaller ar as the global strain increases. To understand
the structural origin of dissipation, we simplify the meta-
material in elastic recoil as a series of spring-mass oscillators
[36] [inset, Fig. 5(b)]. When ε > εc, the metamaterial is
governed by tension springs. The energy conversion
ratio follows Wk=Ws ∼ klðεÞ=hklðεÞi; where hklðεÞi ¼
ε−2

R
ε
0 klðγÞðγÞ2dγ is the average stiffness during the quasi-

static loading [37]. The dissipation is controlled by the
dependence of stiffness upon strains in metamaterials.When
ε < εc, themetamaterial response is dominated by rotational
springs. The energy conversion ratio follows Wk=Ws∼
ð1 − cos θÞ2, which increases with global strain until reach-
ing the maximum rotational angle at ε ¼ εc [38]. Despite
mechanical interactions being more complex in the meta-
materials, the physical picture emerging from the model
points to the essential role of the internal displacements.
In summary, we have studied the asymmetric loading

and unloading in impulsive deformation with mechanical
metamaterials. The designed internal structures incorporate
slender ligaments that permit rotation of more rigid plates
and control the localized displacements via the pore
geometry. Our results indicate that asymmetric quasistatic
loading and the impulsive unloading are programmed with
tunable stiffness and recoil velocity, respectively. More
importantly, the internal structures in the metamaterial
control the energy conversion process. Different from
experimentally observed decay with the global strain
observed in the continuous materials, the energy conversion
efficiency in the metamaterial is determined by the internal
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displacements. Thus, the internal structure allows the force,
velocity, power, and dissipated energy to be tuned to match
performance needs and constraints in impulsive recoil.
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