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Finite dimensional signatures of spinodal criticality are notoriously difficult to come by. The dynamical
transition of glass-forming liquids, first described by mode-coupling theory, is a spinodal instability
preempted by thermally activated processes that also limit how close the instability can be approached. We
combine numerical tools to directly observe vestiges of the spinodal criticality in finite dimensional glass
formers. We use the swap Monte Carlo algorithm to efficiently thermalize configurations beyond the mode-
coupling crossover, and analyze their dynamics using a scheme to screen out activated processes, in spatial
dimensions ranging from d ¼ 3 to d ¼ 10. We observe a strong softening of the mean-field square-root
singularity in d ¼ 3 that is progressively restored as d increases above d ¼ 8, in surprisingly good
agreement with perturbation theory.
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Introduction.—Spinodals predicted by mean-field
theories do not exist in finite dimensional systems because
thermal (or other) fluctuations destabilize the precursor
metastable state before the critical point can ever be reached
[1–4]. An Ising system prepared with the metastable
magnetization, for instance, grows nuclei (instantons
[5,6]) of the opposite magnetization well ahead of the
formal instability region. As the single-flip relaxation
dynamics slows down critically, that of nucleation
accelerates [7]; cluster moves only worsen the imbalance.
Numerical studies have nevertheless observed convincing
hints of the Ising spinodal pseudocriticality in high
enough spatial dimension d. Nucleation kinetics being
exponentially suppressed as d increases, the pseudo-
critical power-law scaling can then be made sufficiently
extended [7].
More theoretically enticing than the Ising spinodal is that

of models with disorder, which capture the essence of
systems ranging from magnetic [8] to mesoporous [9,10]
materials and also appear in social sciences and economics
[11]. These models exhibit a rich set of activated processes,
such as avalanches [8,12] and hopping [13,14], in addition
to nucleation, which makes their criticality especially
challenging to scrutinize. Hence, although the Ginzburg
criterion for the corresponding cubic field theory without
activation gives an upper critical dimension du ¼ 8
[16–18], it is unclear how relevant the associated pseudo-
criticality might be in any given system. Below du,
perturbative expansions relying on dimensional reduction
[17,19] or direct expansion [20] yield distinct predictions.
The theoretical situation thus remains unclear. In addition,
one may expect nonperturbative fluctuations to also

contribute [15]. Although these fluctuations should limit
the relevance of perturbative approaches and question the
very existence of an upper critical dimension, very little is
known about their effects [21,22], emphasizing further the
need for quantitative results in finite dimensional systems.
This theoretical haze has not held back the use of

mode-coupling theory (MCT) to describe the dynamics
of supercooled liquids [23], which has been the subject of
countless numerical and experimental tests [23,24].
Although unclear in its initial derivations, it is now
understood that MCT [25] as well as the mean-field
d → ∞ description of liquids [26] indeed correspond to
the limit of stability of the glass phase upon heating
(or decompressing). The dynamical glass transition
should thus be described as a spinodal (thermodynamic)
instability in the presence of quenched disorder [15,27].
Unfortunately, the spinodal is found to be totally hidden by
finite dimensional effects in direct free-energy calcula-
tions [28,29].
The associated critical scaling laws of the structural

relaxation time τα and of time correlation functions upon
approaching the avoided MCT (or dynamical) transition
from the equilibrium liquid are instead much more
frequently examined [23,24,26]. These quantities are
straightforwardly measured in both simulations and
experiments, but they are also nonuniversal, i.e., model
dependent. Theoretical predictions for the associated
critical exponents are not only sensitive to the spatial
dimension (even above du) and to activated processes, but
also to fine details of the liquid structure and pair
interactions. These predictions are thus typically of
limited quantitative validity in finite d, yet this limitation
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did not prevent MCT from making valid predictive
statements regarding the glassy dynamics of a variety
of materials [23,24].
In addition to nonuniversal scaling laws, the spinodal

criticality is associated to a few universal signatures. In
particular, a square-root singularity of the Edwards-
Anderson parameter directly follows [23,30], which is
dynamically accessible as the plateau height in time
correlation functions or the typical cage size in particle
displacements. Treating fluctuations beyond mean field
also leads to universal predictions regarding the behavior of
four-point susceptibilities [25,31,32]. Yet, because of
the computational difficulty of equilibrating liquids beyond
the avoided dynamical transition, and of the lack of
experimental methods to screen out activated processes,
it remains difficult to assess signatures of the spinodal,
even in simple glass-forming liquids. As a result, the
validity of the square-root singularity remains a debated
issue [33].
In this work, we exploit a recent implementation of swap

Monte Carlo (SWAP) for continuously polydisperse sys-
tems, which bypasses the sluggishness associated with
approaching the avoided dynamical transition [34–36], in
order to probe the spinodal criticality beyond the MCT
crossover in equilibrium conditions. By carefully control-
ling for activated processes, our analysis manages to extract
a sufficiently long scaling regime of the typical cage size to
estimate effective critical exponents and the putative
presence of the square-root singularity across several space
dimensions from the experimentally relevant d ¼ 3, where
we conclude that the singularity is considerably softened,
up to d ¼ 10where a nearly perfect square-root scaling can
be convincingly observed.
Simulation details.—We consider a continuously poly-

disperse system of N hard spheres under periodic boundary
conditions in a simulation box of constant volume V. A
hypercubic box is used in d ¼ 3, 4, 5, 6, and 8, while in
d ¼ 7, 9, and 10 we use the Wigner-Seitz cell of the
checkerboard lattice in order to decrease the number of
simulated particles while preserving the same effective box
size. The particle-size distribution is PðσÞ ¼ K=σ3, with
normalization constant K for diameters σ ∈ fσmax; σming,
where σmax, σmin are the maximum and minimum diameters
for a given polydispersity. The average diameter σ̄ sets the
unit of length, the degree of polydispersity is defined by the
standard deviation of the diameter distribution, and the
packing fraction is φ ¼ ρV̄d for a number density ρ ¼ N=V
and average volume of a d-dimensional hypersphere V̄d.
The degree of polydispersity is chosen to be the minimum
needed for the SWAP efficiency to saturate, i.e., 23% for
d ¼ 3, 10% for d ¼ 4–8, and 8% for d ¼ 9 and d ¼ 10
[36], and suitably optimized SWAP sampling is used to
equilibrate initial configurations. This approach ensures
fast structural relaxation without crystallization or
fractionation. Structural equilibration is notably validated

by the complete decay of the self-part of the particle-scale
overlap function,

QðtÞ ¼ 1

N

XN

i¼1

Θ½a − jriðtÞ − rið0Þj�; ð1Þ

where Θ is the Heaviside function and a ¼ 0.3σ̄ is about the
typical particle cage size [29,35–37]. The associated struc-
tural relaxation time τα is defined as QðταÞ ¼ 1=e. From
these initial equilibrium configurations, multiple simulations
are then run with a purely local Monte Carlo dynamics. This
computational scheme achieves equilibration at densities
3%–8% above the avoided dynamical transition, depending
on d [35,36]. This strategy opens a comfortable regime to
study glassy dynamics approaching the MCT crossover
from the arrested phase, unavailable to previous computa-
tional work.
Typical cage size.—We first consider the size of the

typical cage Δ̂, which in the MCT and the mean-field
description of hard spheres is expected to scale as

Δ̂ðφÞ ¼ Δ̂d − Adðφ − φdÞ1=δ; ð2Þ

with 1=δ ¼ 1=2 and Δ̂d ¼ Δ̂ðφdÞ for densities beyond the
dynamical transition, φ > φd. In the high-dimensional
limit, Δ̂ could be extracted from the long-time plateau of
the mean squared displacement (MSD) of an individual
particle, Δ̂ ¼ Δr2i ðtÞ ¼

R
r2Gsðr; tÞdr, where Gsðr; tÞ is

the self-part of the van Hove function. In finite dimensions,
two difficulties arise. First, caging is heterogeneous, and
hence the full distribution of cages must be considered.
Second, a sharp plateau in the MSD can only be identified
much beyond the avoided dynamical transition, i.e., too far
beyond the regime of interest. We consider the second
effect first. Because activated processes interfere with the
formation of the MSD plateau, the size of the transient
cage must be extracted over a finite time window.
In order to identify the mean-field-like dynamical
caging regime, we rely on the non-Gaussian parameter,
α2ðtÞ ¼ ½d=ðdþ 2Þ�½hr4ðtÞi=hr2ðtÞi2� − 1, as illustrated in
Fig. 1. More specifically, the upper bound of the time
window is set at 20% of peak non-Gaussianity, i.e., the
maximum of α2ðtÞ, and the lower bound is set to the short-
time plateau of α2ðtÞ. Because the lower bound is much
smaller than the upper bound, results are insensitive to its
precise value, while the upper bound only weakly affects
the subsequent analysis as long as it is chosen consistently.
Note that for packing fractions much above φd (in d ¼ 3,
φ≳ 0.635), the system does not relax within the simulation
timescale (with standard dynamics), which results in a clear
plateau in the MSD (Fig. 1). The upper bound is then even
tighter. Note also that generalizing the MSD to further
suppress the contribution of activated processes as in
Ref. [13] markedly flattens the MSD, but does not
quantitatively affect the subsequent analysis [38].
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Once the timescale for identifying the cage dynamics is
set, we can measure the cage size for each particle, Δi, and
average over samples and particles to define the cage size
distribution PðΔiÞ. The results in Fig. 2 show that cages

generally tighten as density increases in all dimensions, but
that fat tails at large displacements persist for all densities.
These tails deviate significantly from the log-normal forms
reported in some mean-field models [13]. Although relatively
little theoretical guidance is available as to what the proper
functional form for PðΔiÞ should be [39], our observations
suggest that activated processes are not fully eliminated from
the MSD analysis. To further sidestep this issue, we use as
estimator of the typical cage size the mode of the distribution,
Δ̂ ¼ argmaxΔi

PðΔiÞ, which is much less sensitive to the
activated processes that appear in the fat tail of the dis-
tribution than the mean cage size, but converges to the same
quantity as d → ∞. (In the limit d → ∞ particles cannot
escape their cage and the cage size probability distribution is
sharply peaked). This choice of the typical cage size captures
the mean-field essence which, by construction, considers the
behavior of the most probable cage [40].
In order to assess the critical scaling of the typical cage

size, Δ̂ðφÞ is fitted to Eq. (2) using δ, Δ̂d, and Ad as
parameters, while φd is obtained independently from
the growth of the relaxation time ταðφÞ [36] (Fig. 3 and
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FIG. 2. Cage size distributions PðΔiÞ in (a) d ¼ 3 for
φ ¼ 0.6005, 0.6032, 0.6111, 0.6208, 0.6309, and 0.6414 and
(b) d ¼ 6 for φ ¼ 0.1810, 0.1829, 0.1842, 0.1865, 0.1892, and
0.1916. Note that φd ¼ 0.600ð2Þ and 0.1808(8) in d ¼ 3 and 6,
respectively. Fat tails at large displacements persist over the
whole density regime accessible in simulations. The estimator
Δ̂ ¼ argmaxΔi

PðΔiÞ (vertical dashed lines) nonetheless mono-
tonically shifts to smaller values as φ increases.
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FIG. 1. Time evolution of the MSD hΔr2ðtÞi and of the non-
Gaussian parameter α2ðtÞ for different densities in d ¼ 3. Vertical
lines denote the start and end times of the window over which the
cage size is measured for different densities.
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FIG. 3. Critical scaling of the typical cage size in d ¼ 3;…; 10
as well as (inset) fitted power-law exponents 1=δ. For visual
clarity, data are vertically shifted by a factor of 4d−3. Error bars
reflect the measurement uncertainty of ΔðφÞ only with Δ̂d and
φd here chosen to optimize the quality of the fit R2. Inset: The
critical exponent 1=δ versus d. A change in the scaling of the
critical scaling exponent is observed around the upper critical
dimension, du ¼ 8, as predicted by perturbative approaches. For
d > du, the results are consistent with the mean-field prediction
(1=δ ¼ 1=2, dashed line); for d < du, the deviation from the
mean-field result is approximately linear, 1=δ − 1=2 ¼ Bðdu − dÞ
with B ¼ 0.049ð3Þ (solid line). Note that the linear fit, guided by
perturbation theory, assumes 1=δ ¼ 1=2 in d ¼ du ¼ 8. Treating
du as a free parameter leads to a linear fit where B ¼ 0.039ð2Þ
and du ¼ 8.9ð2Þ.
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Table I). Because of the uncertainty on φd, the cage size at
φd is not directly measured, but the fitted value is consistent
with the direct estimate, which validates our approach. The
values of the fit parameters and direct measurements are
listed in Table I. Note that both the fit error on Δ̂d at a given
φd and the propagated uncertainty from φd are then
included. In contrast to earlier (cruder) estimates [41],
we find that for a given polydispersity, Δ̂d decreases
monotonically with increasing dimension [30]. More
significantly, we also find that 1=δ decreases mono-
tonically, and nearly linearly, as dimension increases, from
0.74(9) in d ¼ 3 down to values numerically indistinguish-
able from the mean-field prediction, 1=δ ¼ 1=2, around
d ¼ 8. Note that due to relatively large error bars on the
estimates of typical cage size, a range of exponent 1=δ may
fit the data (see Fig. 3). To be consistent across all
dimensions, we extract the best-fit value of 1=δ. We further
verify that the value of the critical exponent remains
unchanged, within error estimates, for d ≥ du. Fixing du ¼
8 and 1=δ ¼ 1=2 at d ¼ 8, we obtain that a linear fit
1=δ ¼ 1=2þ Bðdu − dÞ, with fit parameter B ¼ 0.049ð3Þ
for d ≤ 8, captures the deviation from the mean-field
prediction well, as shown in the inset of Fig. 3 (solid line).
To estimate du directly from the numerical data, one may
treat it as an additional fit parameter, which yields
du ¼ 8.9ð2Þ with B ¼ 0.039ð2Þ (dashed line). This
estimate is slightly above but still reasonably close to the
theoretical prediction. Given the relatively large error bars
on 1=δ and its unknown functional dependence on d for
d < du, further narrowing these estimates remains an open
numerical challenge.
We have ensured that estimates of the typical cage size

and hence of the critical exponent 1=δ do not suffer from
finite-size effects [38]. Although the precise numerical
estimates of δ are fairly robust to the details of the above
analysis, they may still be fragile to the overall scheme. The
detection of a marked crossover in the vicinity of d ¼ 8 and
the systematic softening of the square-root singularity
below du ¼ 8 are nonetheless numerically robust [38].
Interestingly, the latter is in sharp contrast with the
prediction from dimensional reduction [17,19].
Conclusion.—The finite dimensional vestige of the

spinodal criticality associated with the dynamical transition

of glass-forming liquids has here been characterized by
numerical simulations using the SWAP algorithm and a
careful screening of activated processes across a broad
range of spatial dimensions. Our simulations reveal that the
square-root singularity, often used to describe experimental
measurements in molecular glass formers, is dramatically
softened in d ¼ 3 for hard spheres, a canonical model for
testing MCT predictions. The measured effective exponent,
1=δ ≈ 0.75, can still be considered as indirect evidence for
an underlying avoided singularity, because 1=δ ¼ 1 would
be trivially expected for a featureless evolution of the cage
size. Further, the slow variation of 1=δ toward 1=2 with
spatial dimension d suggests that strong deviations from
mean-field criticality exist even in large spatial dimensions.
It takes simulations in dimensions d ≥ 8 to observe direct
signatures of the square-root scaling that underlies the
mean-field dynamical glass transition. The agreement
between our results with perturbative approaches is
nevertheless surprising, given the expected role of non-
perturbative physics in the avoidance of the dynamical
glass transition [15], which can in principle persist even
above d ¼ 8. A possible explanation might be the relative
insensitivity of our specific estimators to these effects. Our
results qualitatively support a crossover to mean-field-like
behavior in the vicinity of d≳ 8, but the relatively large
error bars restrict the convincing determination of du
being 8.
Because this spinodal critical point is part of a broad

universality class [15], we expect our results to apply to a
variety of other systems, for which the interplay between
activation and criticality might be harder to control. Most
crucially, these results further motivate the use of the
dynamical criticality and of the mean-field description in
describing the behavior of finite dimensional liquid glass
formers. It was recently shown that deviations from the
dynamical transition can be studied considering the degree
of localization of unstable modes in the potential energy
landscape [42]. Localized excitations are indeed expected to
disappear as d increases, and our study thus also motivates
verifying this prediction in larger dimensions.

Data associated with this work are available from the
Duke Digital Repository [43].

TABLE I. Fit parameters Ad and Δ̂d for Eq. (2) for different dimensions. The results for φd are obtained by standard MCT dynamical
scaling [26]. The direct evaluation of the typical cage size at the estimated φd validates the value of the fitted quantity. Error bars on the
fit parameters are determined from the quality of the fit R2 (≥ 99.8% of the best fit) to Eq. (2).

d 3 4 5 6 7 8 9 10

φd 0.600(2) 0.410(2) 0.277(1) 0.1808(8) 0.1147(6) 0.0716(3) 0.0426(2) 0.0255(1)
Δ̂d 0.015(2) 0.021(2) 0.020(2) 0.018(1) 0.016(1) 0.010(1) 0.013(1) 0.011(1)
Δ̂ðφdÞ 0.0148(5) 0.0208(5) 0.0196(5) 0.0175(6) 0.0161(6) 0.0101(4) 0.0129(5) 0.0106(5)
1=δ 0.74(9) 0.68(9) 0.65(8) 0.61(9) 0.59(9) 0.53(9) 0.55(10) 0.52(8)
Ad 0.11(2) 0.16(2) 0.15(2) 0.12(2) 0.11(2) 0.04(1) 0.09(3) 0.04(1)
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