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The realization of integrated quantum circuits requires precise on-chip control of charge carriers. Aiming
at the coherent coupling of distant nanostructures at zero magnetic field, here we study the ballistic electron
transport through two quantum point contacts (QPCs) in series in a three terminal configuration. We
enhance the coupling between the QPCs by electrostatic focusing using a field effect lens. To study the
emission and collection properties of QPCs in detail we combine the electrostatic focusing with magnetic
deflection. Comparing our measurements with quantum mechanical and classical calculations we discuss
generic features of the quantum circuit and demonstrate how the coherent and ballistic dynamics depend on
the details of the QPC confinement potentials.

DOI: 10.1103/PhysRevLett.125.107701

Quantum point contacts (QPCs) are the smallest
fundamental units of solid state based quantum circuits.
These short tunable one-dimensional (1D) constrictions in
a two-dimensional electron system (2DES) display an
astonishingly rich spectrum of physics from the famous
conductance quantization [1–3] to many-body interaction
effects such as the so-called 0.7 anomaly [4–6]. Individual
QPCs are important components in quantum circuits, e.g.,
as charge detectors [7] or to split quantum-Hall edge
channels [8,9]. The complexity of QPCs has been revealed
in many experiments [5] including shot noise measure-
ments [10], scanning gate spectroscopy [11,12], thermo-
electric studies [13], phototransport [14], magnetotransport
out of equilibrium [15,16], or quantum transport through
freely suspended devices [17]. Aspects of the ballistic
dynamics of coupled QPCs have been studied in experi-
ments focusing on non-Ohmic resistance [18–22] or
magnetic deflection [15,16,23], spin-orbit coupling
[24,25], defect scattering [26], or diffraction at a QPC
[27]. In ballistic quantum circuits, QPCs could serve as a
coherent electron source or sink. However, such a utiliza-
tion requires a comprehensive understanding of the QPCs
carrier emission and collection properties. Both are
characterized by the coupling between the QPC’s local
1D modes and the ballistic dynamics in the 2DES. Here we
study the combined ballistic and coherent dynamics of two
QPCs in series. Our results substantially improve our
understanding of QPCs and provide a viable basis for
the design of ballistic quantum circuits.
We consider two QPCs, defined electrostatically using

the usual split gate design. They are tuned to their quantized
conductance regimes and interact via the exchange of

ballistic electrons via a free, i.e., grounded, region of a
2DES. We demonstrate that the mutual coupling can be
strongly enhanced by fine-tuning an electrostatic lens
[28,29] between the two QPCs. The lens functions by
refocusing carriers diverging from one QPC into the second
QPC. For studying this electrostatic focusingwe combine it
with magnetic deflection [23,30] in a field perpendicular to
the 2DES. (We avoid the common term magnetic focusing,
as a homogeneous magnetic field merely deflects currents.)
This combination is essential to fully determine the angular
resolved emission spectrum of the QPCs and explore
electrostatic focusing between QPCs. Our magnetic fields
are so small that we can neglect the Zeeman splitting of
electron states.
For our model calculations we first define a 2D

electrostatic potential landscape based on the actual sample
layout and characterization measurements. Then we deter-
mine the ballistic electron dynamics by numerically solving
either the Schrödinger equation or the classical equation of
motion. For our measurements we use an (Al,Ga)As/GaAs
heterostructure containing a 2DES 107 nm beneath
its surface. Figure 1(a) displays the surface including
metal gates used to define the two QPCs and a lens in
between. The 2DESs Fermi energy and mean free path
measured at cryogenic temperatures are EF

0 ≃ 10.9 meV
and lm ≃ 24 μm. We performed direct current (dc)
measurements in a helium-3 evaporation cryostat at
T ≃ 250 mK. For a basic characterization we present in
Fig. 1(b) linear response pinch-off curves of the individual
QPCs. The conductance as a function of gate voltages V1,
V2 features flat plateaus at NGQ with N ¼ 1; 2;… and the
spin degenerate 1D conductance quantum GQ ¼ 2e2=h.
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The precise relation between the confinement potential
of the QPCs and carrier emission profile is central for
understanding the ballistic carrier dynamics and for
optimizing a quantum electronic circuit. The lateral
confinement defines the mode structure of the 1D channel
while its potential shape in the current direction [x axis in
Fig. 1(a)] governs the coupling of the 1D modes into the
surrounding 2DES. Our pinch-off curves exhibit smooth
steps between conductance plateaus suggesting reflection-
less transmission between the free 2DES and the QPCs.
This indicates smooth (parabolic) potential barriers as also
implemented in our model [31]. Importantly, for reflection-
less coupling the lateral 1D eigenmode structure is pre-
served in the coherent QPCs’ emission profile.
Although the conductance steps of our QPCs in Fig. 1(b)

are almost equidistant as a function of gate voltages, the
corresponding energy spacings between the 1D subbands
[cf. Fig. 1(c)] strongly decrease with N. These energies are
incompatible with parabolic lateral confinement for N ≥ 4
[32]. They point to a transition by screening from a
parabolic confinement for N ≤ 1 towards a hard wall
potential for N ≥ 4 [33].
In the following measurements we apply a dc voltage of

V ¼ −1 mV across one QPC (emitter) and measure the
current I flowing to ground through the second QPC
(detector), cf. Fig. 1(a). Electrons move ballistically
between the QPCs as their distance of l ≃ 4.6 μm is smaller
than lm. Alternative current paths include backscattering
through the emitter or scattering to the grounded side
contacts (Iside), such that the emitter current Iem ¼ Iside þ I.
The resistance between the center region and ground at the
side contacts is ≃37 Ω , small compared to the QPC
resistances exceeding 1.8 kΩ in our measurements for
N ≤ 7. Nevertheless, backscattering from the macro-
scopic side contacts causes a small shift of the local
chemical potential between the QPCs and, hence, a small

diffusive contribution to the detector current I, such that
I ¼ Iball þ Idiff with Idiff < 0.02Iside (Idiff is additionally
influenced by a tiny voltage offset of the current amplifier),
cf. Ref. [34]. Here, we are interested in Iball, the contri-
bution to the detector current generated by carriers moving
ballistically between emitter and detector.
Iball is limited by the divergence of the carrier modes

emerging from a QPC: carriers are emitted within an
aperture angle which depends on the height of the barrier
in current direction and the lateral confinement along it.
Given their divergence most of the carriers miss the
detector and mostly contribute to Iside. The purpose of
our lens is to refocus these carriers to enhance the coupling
between the QPCs.
To first characterize the divergence and lateral mode

structure of the QPCs we perform magnetic deflection
experiments without electrostatic focusing [26,27]. Our
QPCs are aligned in series, such that ballistic carriers
emitted at a larger angle reach the detector at a higher field.
In Fig. 2(a) we display example curves IN;N with both
QPCs tuned to the center of the Nth conductance plateau
with N ¼ 1;…; 7. The two sets of curves correspond to
opposite current directions, i.e., exchanged role of
emitter vs detector. The symmetry is predicted by the
Onsager relations [39] for a multiterminal device, here
IðBÞj← ¼ Ið−BÞj→, where arrows indicate the opposite
current directions [40]. Below, we will decipher the
information the serial current IðBÞ encodes on the mode-
to-mode coupling between the QPCs.
To predict Iball we numerically solve the Schrödinger

equation for a single electron moving in a 2D Fermi gas
connected to leads as indicated in Fig. 1(a). We account
for the estimated dephasing length of lϕ ≃ 0.5 μm by
energy averaging, where lϕ is dominated by temperature
and bias broadening. To mimic the measured mean-free
path of lm ≃ 24 μm we include a weak homogeneous
absorbing potential between the QPCs. To model the
lateral confinement of the QPCs we use a hard wall
potential, where its gate voltage dependent width and
depth (at the center of the constrictions) are determined
from the subband spacings plotted in Fig. 1(c) [32]. The
opening of the constrictions towards the leads follows the
semicircular shape of the gates. The lens potential con-
trolled by the gate voltage VL, cf. Fig. 1(a), is added
on demand. From the solution of the Schrödinger
equation we extract the total transmission probability
TN;MðB;VLÞ ¼

P
n;m tn;m of a ballistic and coherent elec-

tron through the two QPCs in series with the first (second)
QPC set to the Nth (Mth) conductance plateau. Thereby
tn;mðB;VL;V1; V2Þ, n ¼ 1; 2;…; N, m ¼ 1; 2;…;M are
the transmission probabilities between the occupied trans-
verse eigenmodes of the detector and emitter. We consider
slowly varying QPC potentials and neglect coherent
backreflections into the QPCs. In this limit tn;m do
not depend on the gate voltages for n ≤ N and m ≤ M
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FIG. 1. (a) Atomic force microscope image of the sample; Ti/
Au gates on GaAs surface (dark). Gate voltages V1; V2; VL are
used to define below in the 2DES QPC1;2 and a lens. Source-drain
voltage V is applied across QPC1; current I is measured through
QPC2; the region in between is grounded via 4 Ohmic contacts
(squares). The horizontal dashed line is the principal axis of the
lens with aperture angle α ≃ 55°. (b) Individual linear response
pinch-off curves GðV1;2Þ of QPC1;2 (V2;1 ¼ VL ¼ 0), corrected
for lead resistance Rlead. (c) Energy spacings between subsequent
subbands.
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and can be reconstructed from the total transmissions
as tn;m ¼ TN;M − TN−1;M − TN;M−1 þ TN−1;M−1. The
Landauer formula relates TN;MðB; VLÞ to the measured
ballistic current, IballN;MðB; VLÞ ¼ GQVTN;MðB; VLÞ.
For better illustrating the mode structure we have

also measured IN;M¼7ðBÞ for 1 ≤ N ≤ 7 with fixed M.
Aiming at a direct comparison with model predictions we
subtract the B-field independent Idiff from the raw
data obtaining IballN;M¼7ðBÞ ¼ IN;MðBÞ − IdiffN;MðBÞ [34].
In Fig. 2(b) we plot the measured transmission differences,
ΔTN;M¼7ðBÞ≡ ½IballN;M¼7ðBÞ − IballN−1;M¼7ðBÞ�=GQV, and in
Fig. 2(c) as red dashed lines the bare model predictions,
ΔTN;M¼7 ¼

P
7
m¼1 tN;m. Both, measured and predicted

curves display a growing magnetic field range of finite
Iball as N is increased. It confirms a larger aperture angle
of carriers emitted from a QPC at higher modes. Our
measured data roughly follow the model curves, albeit they
show additional fine structure and a reduced symmetry.
So far we assumed a perfectly flat potential between two

perfectly positioned QPCs. The blue solid lines in Fig. 2(c)
are the result of a more realistic model taking into account
the following imperfections of the sample: (i) Both QPCs
are slightly shifted with respect to each other and the
principal axis of the lens, cf. Fig. 1(a). These lateral shifts
break the symmetry, such that IðBÞ ≠ Ið−BÞ similar as in
our measurements in Fig. 2(b). (ii) The electrostatic
potential beneath the lens is not flat but develops a dip
independently of VL. The dip is caused by the piezoelectric
effect of (Al,Ga)As, which is strained by the lens gate
during cool-down [34]. The combination of (i) and
(ii) results in additional features in IðBÞ similar to our

experimental observations, albeit the agreement is not
perfect: Compared to our model our measurements in
Fig. 2(b) show for N ≲ 5 enhanced transmission for the
outermost maxima (at larger jBj). This is also visible as an
almost bimodal current distribution in Fig. 2(a). We
attribute the differences to the scattering properties of
the electrostatic potential dip, visualized in Fig. 14 in
Ref. [34]. Not knowing its detailed shape we assume
a parabolic dip with smooth edges. Compared to our
measurements it slightly underestimates the reduction of
Iball at B ¼ 0. Such deviations between theory and experi-
ment illustrate our limited knowledge of the exact potential
landscape. More accurate predictions might be reached
with self-consistent calculations solving the 3D Poisson
and Schrödinger equations, which is beyond the scope of
this article.
Next we focus on the interference pattern of the trans-

mission curves ΔTN;M¼7, which express the lateral coher-
ence in our setup. The N maxima of each fully coherent
model curve [red dashed lines in Fig. 2(c)] reflect the order
of the lateral eigenmodes. A classical calculation without
disorder [34] reproduces the widths and heights of
ΔTN;MðBÞ in Fig. 2(c) but predicts a smooth transmission
maximum without oscillations. The dashed gray lines in
Fig. 2(c) and a copied version in Fig. 2(b) are guides to
the eye. They are chosen to connect the nth maxima
for odd (even) N for the bare model in Fig. 2(c). They
also cut through the respective minima for even (odd) N, a
fingerprint of the coherent mode structure. The measured
data in Fig. 2(b) approximately reproduce the alternation
between minima and maxima found in our model
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FIG. 2. (a) Magnetic deflection with two QPCs in series: measured detector current IN;N versus perpendicular magnetic field B for
both QPCs tuned to the Nth conductance plateau with N ¼ 1;…; 7. Two data sets (gray, blue) correspond to opposite current directions;
vertical shifts IoffðNÞ for clarity. Measured in (b) versus calculated in (c) transmission differences ΔTN;M¼7. Model curves in (c) for
perfect symmetry and zero lens potential (red dashed) and with corrections of the QPC positions and accounting for the piezoelectric dip
of the lens potential (solid blue lines). Maxima and minima of ΔTN;M¼7 are marked in panel (b) with red (black) triangles. Dashed gray
lines [identical in (b) and (c)] connect the nth maxima for odd (even) N and the nth minima for even (odd) N.
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calculations. The comparison confirms the coherent nature
of the measured interference pattern [41].
For practical applications it is desirable to maximize the

coupling of distant nanodevices, e.g., by refocusing carriers
emitted from one QPC to the other. To achieve electrostatic
focusing, we add a concave spherical lens in the center
between the two QPCs, cf. Fig. 1(a) [28,29]. In a classical
model with perfect geometry its focusing properties are
described by the electronic version of Snell’s law with the
refractive index for electrons, nr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
F=E

L
F

p
, where the

Fermi energies below the lens gate, EF
L, and elsewhere,

EF
0, are assumed to be constants. For our concave lens

focusing requires nr > 1, i.e. EF
L < EF

0, which we
achieve by applying VL < 0. In Fig. 3(a) we combine
electrostatic focusing and magnetic deflection and plot the
measured transmission TðB; VLÞ ¼ IðB; VLÞ=GV for
N ¼ M ¼ 7. (The magnetic deflection experiment shown
as gray symbols in Fig. 2(a) corresponds to the vertical
cross section at VL ¼ 0.) While we decrease VL < 0 the
current maxima bend inwards and eventually cumulate in a
single peak at B ¼ 0 and VL ≃ −0.64 V, a direct signature
of electrostatic focusing. Figure 3(b) presents various
horizontal cuts TðVLÞ for constant B. Independent of B
the lens pinches off near VL ¼ −1.2 V similar as the lens’
transmission curve without QPCs (V1 ¼ V2 ¼ 0), added as
a red dashed line. Interestingly, the transmission maxima all
lie within the range of VL in which the lens itself causes
virtually no reflection, corroborating our interpretation in
terms of electrostatic focusing.
While we measure electrostatic focusing as a function of

VL, model calculations are performed in terms of the
electrostatic lens potential parameterized by nr or EL

F. A
direct comparison therefore requires a calibration of
nrðVLÞ. We combined two complementary methods,
namely Landau-level reflection measurements [42] and a
self-consistent approach based on Snell’s law [34]. The
calibration allows us to display our model calculations in
Fig. 3(c) in the same coordinate system as the measure-
ments in panel (a). The dashed lines in Figs. 3(a) and 3(c)
are identical and serve as a guide for comparison.

The model calculations clearly reproduce the main features
of our measurements.
Figure 3(d) shows the calculated current density emitted

by a QPC forN ¼ 7 at B ¼ 0 into a flat 2DES together with
the actual lens geometry. It confirms that the lens captures
the emitted beam for N ≤ 7, in agreement with the focusing
results plotted in Fig. 3(a). In Ref. [34] we show that the
emission of a QPC depends on the shape of its confinement
potential and that a parabolic confinement is in disagree-
ment with our experiment.
For N ¼ 7 our model predicts a transmission at the focal

point of T ≃ 35%. About half of the reduction from 100%
is caused by the discussed imperfections of the layout.
The other half is due to an additional lens abberation
incorporated by design: we optimized the lens for N ¼ 1
and thereby neglected the effects of bent electron beams
(in contrast to straight beams in ray optics). For a bent beam
the lens’ focus point depends on the curvature at which
carriers are emitted from a QPC. The measured trans-
mission at the focal point is T ≃ 13%. This further
reduction indicates additional deviations of the electrostatic
potential from the simulated geometry not yet accounted
for in our model.
In summary, using a field effect lens we have achieved

electrostatic focusing of ballistic electrons at B ¼ 0
between two QPCs separated by a mesoscopic region of
grounded 2DES. As a tool to directly illustrate electrostatic
focusing and to characterize the coherent lateral mode
structure of the beam emitted by a QPC, we have combined
electrostatic focusing with magnetic deflection. The
emission profile of a QPC crucially depends on the shape
of its electrostatic (confinement) potential. We present a
single-particle quantum-mechanical model which provides
realistic predictions of the coherent and ballistic electron
dynamics for a given electrostatic potential landscape. The
quality of its prediction depends on the accurate knowledge
of the electrostatic potential. Atomic force and electron
beam microscopy allow a precise determination of gate
geometries. For the calibration of individual potential
components (QPCs and lens) we apply (magneto) transport
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spectroscopy. Finally, comparison of the measured and
calculated current profiles IðB; VLÞ through both QPCs in
series allows us to extract further information on the
electrostatic potential landscape such as the dip at the lens
waist or details of the QPC confinement potentials. The
accurate description of ballistic electrons will be key for
designing future integrated quantum circuits with multiple
components. Our results and methods (in experiments and
theory) present an important step towards this goal.
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