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The nontrivial topology of p-wave superfluids makes these systems attractive candidates in information
technology. In this work we report on the topological state of a p-wave nonequilibrium excitonic insulator
(NEQ-EI) and show how to steer a nontopological band insulator with bright p excitons toward this state by
a suitable laser pulse, thus achieving a dynamical topological phase transition. The underlying mechanism
behind the transition is the broken gauge-symmetry of the NEQ-EI which causes self-sustained persistent
oscillations of the excitonic condensate and hence a Floquet topological state for high enough exciton
densities. We show the formation of Floquet Majorana modes at the boundaries of the open system and
discuss unique topological spectral signatures for time-resolved ARPES experiments. We emphasize that
the topological properties of a p-wave NEQ-EI arise exclusively from the electron-hole Coulomb
interaction as the system is not driven by external fields.
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A quantum system with nontrivial bulk topological
properties admits localized single-particle states at the
system edges [1–3]. Existence of well-defined quasipar-
ticles is of course a prerequisite for the bulk-edge corre-
spondence to have physical relevance. In fact, most
topological invariants are constructed from a quasiparticle
Hamiltonian which is treated either as “noninteracting,”
i.e., independent of the charge distribution, or at a “mean-
field” level. Mean-field Hamiltonians introduce an appeal-
ing twist in the topological characterization since, at fixed
external potentials, they depend on the (self-consistent)
charge distribution of the stationary state. Thus, in princi-
ple, a quantum system can change its topological properties
upon a transition from an excited state to another.
Furthermore, the possibility of self-sustained, i.e., not
driven by external fields [4], oscillatory solutions extends
the class of topological invariants to the Floquet realm
[5–8].
Nonequilibrium (NEQ) excitonic insulators (EI) are

excited states of band-insulator (BI) mean-field
Hamiltonians giving rise to a self-sustained oscillating
order parameter, i.e., the excitonic condensate (EC) [9–
19]. In this Letter we show that a p-wave NEQ-EI under-
goes a topological transition with increasing the EC
density, leading to the formation of Floquet Majorana edge
modes [20]. We further demonstrate that the Floquet
topological p-wave NEQ-EI can be built up in real time
by laser pulses of finite duration provided that p excitons
exist and are optically active. As the initial BI ground state
has vanishing EC density and trivial topology, the system
experiences a dynamical phase transition (from BI to
nontopological NEQ-EI) followed by a topological one.
The density of topological defects predicted by the Kibble-

Zurek mechanism [21,22] for external drivings of finite
duration [23–28] can indeed be made sufficiently small to
preserve the topological character of the final state. Unique
spectral signatures for time-resolved ARPES investigations
are also discussed. In particular, the spectral weight of the
excitonic sideband experiences a “blockade” just before the
topological transition, and at the transition the spectrum
becomes gapless—the p-wave NEQ-EI turns into a Dirac
semimetal.
Nonvanishing topological invariants [1,3] and existence

of Majorana edge modes [29] in quantum matter with a p-
wave symmetry-broken ground state have been recently
reported for superconductors [30–33], superfluids of ultra-
cold atomic gases [34], nanowires [35], insulators [2], and
excitonic insulators [36–38]. In nonequilibrium and non-
driven conditions, however, a nontrivial topology has so far
been found only in the mean-field Floquet Hamiltonian of a
p-wave superfluid [39].
The simplest description of a NEQ-EI is provided by a

spinless one-dimensional Hamiltonian with a single
valence and conduction bands separated by a direct gap
of magnitude ϵg [19]:

Ĥ ¼
X
αj

ð−Þα½Vψ̂†
αjψ̂αjþ1 − ð2V þ ϵg=2Þn̂αj�

þ
X
ij

Uijn̂vin̂cj; ð1Þ

where ψ̂vj (ψ̂cj) annihilates a valence (conduction) electron

in the jth cell, n̂αj ≡ ψ̂†
αjψ̂αj and ð−Þα ¼ 1, −1 for

α ¼ v, c (the hopping integral V is chosen positive).
The Hamiltonian is invariant under the “local” gauge
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symmetry ψ̂αj → eiθα ψ̂αj associated to the commutation
relation ½Ĥ; N̂α� ¼ 0, with N̂α ¼

P
j n̂αj. For large enough

Uij the ground state is a BI with a filled (empty) valence
(conduction) band. Charge neutral excited states with Nc ¼
1 can be calculated by solving the Bethe-Salpeter equation
(BSE). For short-range interactions, e.g., Uij ¼ δijU, the
BSE admits only one discrete solution corresponding to an
s-wave (even) exciton [19]. A Rydberg-like series, and
hence p-wave (odd) excitons, appears with long-
range interactions such as the soft-Coulomb one:
Uij ¼ U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ji − jj2 þ 1

p
. Henceforth we express all ener-

gies in units of ϵg and choose U ¼ 2V ¼ 1. Then, the BSE
admits multiple excitonic solutions, the two lowest having
energy ϵsx ¼ 0.40 (s wave) and ϵpx ¼ 0.82 (p wave) above
the valence band maximum. Charge-neutral excited states
with a finite density in the conduction band will be treated
in the mean-field approximation.
The lowest-energy excited state of Ĥ with a finite density

of conduction electrons and valence holes equals the
ground state of the NEQ gran-canonical Hamiltonian
ĤNEQ−GC ≡ Ĥ − μvN̂v − μcN̂c, where μα is the chemical
potential for electrons in band α. Charge neutrality is
guaranteed by μv ¼ −μc ¼ −δμ=2 since Ĥ is particle-hole
symmetric (the BI ground state is recovered for δμ ¼ 0).
Exploiting the translational invariance, the mean-field
equations for ĤNEQ−GC can be written as [40]

�−ϵk þ δμ=2 Δk

Δk ϵk − δμ=2

��
φξ
vk

φξ
ck

�
¼ ξek

�
φξ
vk

φξ
ck

�
; ð2Þ

where ϵk ¼ f2V½1 − cosðkÞ� þ ϵg=2g, k ∈ ð−π; πÞ is the
quasimomentum, ξ ¼ � labels the two eigensolutions and
Δk ¼ −

P
q Ũk−qbq is the excitonic order parameter, Ũk

being the Fourier transform of Uij and bq ≡ φ−
cqφ

−�
vq the EC

density. Only states of the minus branch are occupied since

ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεk − δμ=2Þ2 þ Δ2

k

q
≥ 0. Equation (2) has to be

solved self-consistently and Δk ≠ 0 implies a symmetry-
broken NEQ-EI state. Like ground-state EI’s [41], no off-
diagonal long-range order is present in NEQ-EI’s. The
system remains a BI (Δk ¼ 0) for δμ < ϵsx, as it should be
[16,19]. A unique solution Δk ¼ Δ−k (even in k) exists for
ϵsx < δμ < ϵpx (s-wave NEQ-EI). For δμ > ϵpx we can find a
solution Δk ¼ Δs

k þ Δp
k with Δs

k (Δp
k ) even (odd) in k for

any fixed angle θ ¼ arctanðΔs
π=Δ

p
π Þ ∈ ð0; 2πÞ. The p-wave

NEQ-EI state is realized when θ ¼ 0 and hence
Δk ¼ −Δ−k. Below we show that this state can be
generated by suitable laser pulses provided that the
p-wave (s-wave) exciton is bright (dark).
Independently of the symmetry the NEQ-EI state evolves

according to the time-dependent mean-field equations
iðd=dtÞφξ

kðtÞ ¼ hMF
k ðtÞφξ

kðtÞ, where

hMF
k ðtÞ ¼

� −ϵk ΔkðtÞ
Δ�

kðtÞ ϵk

�
ð3Þ

is the physical mean-field Hamiltonian. The excitonic order
parameter ΔkðtÞ ¼

P
q Ũk−qφ

−
cqðtÞφ−�

vq ðtÞ acquires a
dependence on time through the wave functions. In
Ref. [19] we have shown that this dependence is mono-
chromatic and given by

ΔkðtÞ ¼ Δkeiδμt: ð4Þ

Thus, the mean-field Hamiltonian supports self-sustained
Josephson-like oscillations driven by the broken gauge
symmetry. We then construct the Floquet Hamiltonian hFloqk

from T e−i
R

T

0
dthMF

k ðtÞ ¼ e−ih
Floq
k T , where T is the time-

ordered operator and T ¼ 2π=δμ, and look for nonvanish-
ing Floquet topological invariants. Since hMF

k ðtÞ is a 2 × 2

monochromatic and Hermitian matrix the Floquet
Hamiltonian can easily be calculated [42]:

hFloqk ¼
�−ϵk Δk

Δk ϵk − δμ

�
¼ −

δμ

2
1þ ekn⃗ðkÞ · σ⃗; ð5Þ

where σx;y;z are the Pauli matrices and n⃗ðkÞ ¼ fnxðkÞ;
nyðkÞ; nzðkÞg ¼ fΔk=ek; 0; ðδμ=2 − ϵkÞ=ekg. Interestingly,
hFloqk coincides with the NEQ gran-canonical mean-field
Hamiltonian in Eq. (2) up to a constant diagonal shift. The
winding number [43–45]

W ¼ 1

2π

Z
π

−π
dΘk; Θk ¼ arctan

nzðkÞ
nxðkÞ

; ð6Þ

measures the number of windings of the unit vector d⃗k ¼
fnxðkÞ; nzðkÞg as k crosses the first Brillouin zone. W is a
positive or negative integer in the topological phase and it is
otherwise zero. It is immediate to realize thatW ¼ 0 for any

topologically trivial topological

w
in
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r 
W

FIG. 1. Winding numberW as a function of δμ (dashed line). In
the inset we show the path of the vector d⃗k in the nontopological
phase for δμ ¼ 0.96 < ϵg (left panel) and in the topological phase
for δμ ¼ 1.04 > ϵg. All energies are in units of ϵg and the function
Δk is determined self-consistently for each δμ.

PHYSICAL REVIEW LETTERS 125, 106401 (2020)

106401-2



even Δk. If, instead, Δk is an odd function then W ¼ �1
provided that δμ > ϵg, see Fig. 1. Thus a topological
transition occurs in a p-wave NEQ-EI as δμ, and hence
the electron density in the conduction band, exceeds a
critical value. In Fig. 1 we also show the path of d⃗k resulting
from the self-consistent solution of Eq. (2). The difference
in chemical potentials is δμ ¼ 0.96 (left panel) and
δμ ¼ 1.04 (right panel).
According to the bulk-edge correspondence, a number

jWj of topologically protected Floquet Majorana modes
should form at each open boundary [44]. As the Floquet
Hamiltonian in Eq. (5) coincides with the mean-field NEQ
gran-canonical Hamiltonian in Eq. (2) we consider
ĤNEQ−GC on an open wire of N ¼ 100 cells and solve
the mean-field equations in the site basis. The spectrum is
symmetric around zero energy with positive and negative
eigenvalues eþλ ¼ −e−λ ≥ 0. For δμ < ϵg the maximum
energy emax ¼ maxλfe−λ g is strictly negative and the
eigenfunctions φ�

max of energies �emax are delocalized
along the wire. In Fig. 2 we plot the valence probability
jφþ

max;vjj2 versus site j (the conduction probability jφ−
max;cjj2

is identical). A sharp transition occurs for δμ > ϵg since the
spectrum is almost the same as for δμ < ϵg except for two
degenerate eigenvalues appearing at zero energy. The
corresponding eigenfunctions can be chosen to satisfy
φM
vj ¼ �φM�

cj , i.e., they are Majorana modes, and their
valence components are plotted in Fig. 2. The Majorana
modes are correctly localized at the system boundaries and
the degree of localization increases as δμ moves deeper
inside the topological phase.
The topological transition in a (bulk) p-wave NEQ-EI

leaves unique fingerprints on the ARPES spectrum too. The
spectral function AkðωÞ is the sum of a removal (<) and
addition (>) contribution, AkðωÞ ¼ A<

k ðωÞ þ A>
k ðωÞ with

A≷
k ðωÞ¼ jφ�

vkj2δ
�
ω∓ ekþ

δμ

2

�
þjφ�

ckj2δ
�
ω∓ ek−

δμ

2

�
:

ð7Þ

In Fig. 3 we show how AkðωÞ changes from the equilibrium
[panel (a)] to the symmetry-broken [panel (b)] and topo-
logical phase [panels (c)–(d)]. As δμ overcomes ϵpx ¼ 0.82
the system becomes a nontopological NEQ-EI and an
excitonic sideband appears inside the gap [panel (b)]
[19,46]. For δμ ¼ 0.9 < ϵg the conduction density is nc ¼
ð1=N ÞPk jφ−

ckj2 ¼ 0.03 and the averaged order parameter
Δ≡ ð2=N ÞP0<k<π Δk ¼ 0.04 (with N the number of
cells). The removal (blue) component of the excitonic
structure is separated from the bottom of the conduction
band (red) by a small gap, consistently with the insulating
character of the state [inset of Fig. 3(b)]. In contrast with the
s-wave NEQ-EI [19,47], however, the excitonic sideband
has a vanishing spectral weight around the Γ point since
nck ¼ jφ−

ckj2 vanishes at k ¼ 0 in the nontopological phase
[see also the dashed line in Fig. 4(d)]. At the topological
critical point (δμ ¼ ϵg ¼ 1) we find nc ¼ 0.07 and Δ ¼
0.06 (both larger than for δμ ¼ 0.9). Despite Δ ≠ 0 the gap
closes [inset of Fig. 3(c)] and the dispersion of the excitonic
sideband around the Γ point becomes, see Eq. (7), Ek ≡
ðδμ=2Þ − ek ≈ ðδμ=2Þ − γjkj where we have approximated
Δk ≈ γk [see also dashed lines in Fig. 4(c) and Fig. 5(c)].
Thus, the system becomes a Dirac semimetal. The tran-
sition point is also characterized by a discontinuity in nck¼0

which varies abruptly from 0 (δμ < ϵg) to 1 (δμ > ϵg). In
the topological phase δμ ¼ 1.1 > ϵg both nc ¼ 0.11 and

position j
10.85

1.15

1

0.05

ition j
0 85

1

FIG. 2. Square modulus of the valence component of the
eigenfunctions of the mean-field NEQ gran-canonical Hamilto-
nian with eigenvalue emax. For δμ < ϵg the eigenvalue emax is
strictly negative and nondegenerate. For δμ > ϵg the eigenvalue
emax ¼ 0 and the degeneracy is twofold. The corresponding
eigenfunctions are Majorana modes. Energies are in units of ϵg.

equilibrium

phase transition topological W=1

CBM

VBM

gapful

gapless gapful

0

1

-1

-1

0 0

topologically trivial W=0

(a) (b)

(c) (d)

FIG. 3. Contour plot of the spectral function AkðωÞ for different
values of δμ. The red (blue) color refers to the removal
contribution A<

k ðωÞ [addition contribution A>
k ðωÞ]. The delta

functions in Eq. (7) have been approximated by Lorentzians of
width η ¼ 0.05. The insets show a magnification of the spectral
region around the conduction band minimum at ϵg=2. All
energies are in units of ϵg.
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Δ ¼ 0.08 increase and the gap reopens, as Fig. 3(d) shows.
Noteworthy, the spectral weight of the excitonic sideband is
now largest at the Γ point due to the aforementioned
discontinuity in nck¼0.
The remaining issue to be addressed is whether and how

the topological p-wave NEQ-EI state can be prepared. We
answer affirmatively provided that the p-exciton is much
brighter than the s exciton. We consider the system initially
in the BI ground state and drive it out of equilibrium by a
laser pulse,

ĤlaserðtÞ ¼ EðtÞ
X
k

Dkðψ̂†
ckψ̂vk þ ψ̂†

vkψ̂ckÞ; ð8Þ

where Dk is the valence-conduction dipole moment. The
electric field EðtÞ is a pulse of finite duration TP centered
around frequency ωP:

EðtÞ ¼ θð1 − j1 − 2t=TPjÞEPsin2
�
πt
TP

�
sinðωPtÞ: ð9Þ

To enhance absorption by the p exciton we take Dk odd
in k.
First we generate the p-wave NEQ-EI in the nontopo-

logical phase by tuning the central frequency ωP in the
range ðϵpx ; ϵgÞ. In Fig. 4 we show the outcome of a real-time
mean-field simulation performed with the CHEERS code
[48] using Dk ¼ D sinðkÞ and optimal laser parameters
TP ¼ 200, the Rabi frequency ΩP ≡ EPD ¼ 0.02 and
ωP ¼ 0.85 (times in units of 1=ϵg). To find these param-
eters we implemented the searching scheme described in
Ref. [19]. At the end of the pulse the system has steady
occupations nssck giving a density nc ¼ 0.03 [panel (a)] and
an averaged order parameter oscillating in time as ΔðtÞ ¼
Δsseiδμ

sst with steady-state amplitude Δss ¼ 0.04 and
δμss ¼ 0.907 [panel (b)]. This oscillatory behavior is
actually found for each k, i.e., ΔkðtÞ ¼ Δss

k e
iδμsst (not

shown). We mention that the self-sustained oscillations
(persistent at the mean-field level) survive for long enough
time when numerically exact propagation schemes are used
[49]. In panels (c)–(d) we compare Δk and nck obtained
from the self-consistent solution of Eq. (2) at δμ ¼ δμss <
ϵg against Δss

k and nssck obtained from the real-time simu-
lation. The agreement is remarkably good, thereby proving
that a dynamical phase transition from a BI to a non-
topological p-wave NEQ-EI can be induced by properly
choosing the laser pulse. In fact, the steady-state spectrum

FIG. 5. Same as in Fig. 4 but with laser parameters ΩP ¼ 0.06,
ωP ¼ 0.95, and TP ¼ 200. For the self-consistent solution of
Eq. (2) we have used δμ ¼ 1.04. In panel (d) the green-shaded
area separates the nontopological phase (W ¼ 0) from the
topological one (W ¼ 1).

FIG. 4. Time evolution of the conduction density nc [panel (a)]
and the real part of the averaged order parameter Δ [panel (b)]
induced by the laser pulse in Eq. (9) with ΩP ¼ 0.02, ωP ¼ 0.85,
and TP ¼ 200. Comparison of Δss

k and nssck [panels (c)–(d)]
extracted from the real-time simulation (solid red lines) with
the self-consistent Δk and nck obtained from Eq. (2) with δμ ¼
δμss ¼ 0.907 (dashed black lines). Color plot of the time-resolved
and momentum resolved intensity IkðtÞ defined in Eq. (10) [panel
(e)] and its value IΓðtÞ at the Γ-point [panel (f)]. Energies are in
units of ϵg, and times in units of 1=ϵg.
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calculated long after the end of the pump is essentially the
same as the self-consistent spectrum in Fig. 3(b), in
agreement with Ref. [47]. In panel (e) we study the
development of the momentum-resolved intensity of the
excitonic sideband, proportional to nckðtÞ according to
Eq. (7). To account for the finite experimental resolution we
calculate

IkðtÞ ¼
Xkþσ=2

q¼k−σ=2
ncqðtÞ; ð10Þ

with σ ¼ 2π=10 (smaller σ values do not affect the
conclusions). The cut at k ¼ 0 (dashed-purple line) is
displayed in panel (f) and it shows that the intensity IΓðtÞ≡
Ik¼0ðtÞ grows steadily in time until the end of the pulse.
Less obvious is the possibility of driving the BI toward a

topological p-wave NEQ-EI. The BI ground state hasW ¼
0 and hence the system should experience a dynamical
topological transition featuring a gap closure at the quan-
tum critical point. According to the Kibble-Zurek mecha-
nism [21,22] this introduces a diverging timescale
preventing the realization of the topological target state
with an external field of finite duration TP [50,51]. In fact,
topological defects are produced around the Γ point (gap-
closure point) for any TP < ∞ [23–28]. One can easily
prove that for odd dipoles Dk the density nck¼0ðtÞ ¼ 0 at
every time (in the topological phase nck¼0 ¼ 1). In Fig. 5
we show the conduction density [panel (a)] and the
averaged order parameter [panel (b)] for a laser pulse with
TP ¼ 200, ΩP ¼ 0.06, and ωP ¼ 0.95. After the pulse
(t > TP) ncðtÞ attains a steady value and the averaged order
parameter oscillates monochromatically as ΔðtÞ ¼
Δsseiδμ

sst with δμss ¼ 1.04 > ϵg. As panel (c) shows, Δss
k

is indistinguishable from the self-consistent Δk of Eq. (2) at
δμ ¼ δμss. We conclude that for t > TP the mean-field
Hamiltonian has the same form as Eqs. (3), (4), and hence
that the NEQ-EI is topological—the winding number W
depends only on Δk, see Eq. (6). Although the two
Hamiltonians are identical nssck differs from the self-con-
sistent nck close to k ¼ 0 [panel (d)], in agreement with the
Kibble-Zurek mechanism. This topological defect, how-
ever, yields only a minor difference (around k ¼ 0)
between the self-consistent spectra [bottom panels of
Fig. 3] and the steady-state spectra, again in agreement
with Ref. [47].
In addition to the steady-state ARPES features discussed

in Fig. 3, the topological transition produces a striking
signature in the transient spectrum too. The time-dependent
intensity of the excitonic sideband IkðtÞ [panel (e)] and in
particular its value at the Γ point [panel (f)] exhibit a
plateau (green-shaded area) just before the transition,
estimated around t ≃ 140 [52]. Thus, the formation of
topological defects hamper, according to Eq. (10), the
occupation at Γ until the transition occurs, a phenomenon

which we call “topological blockade.” This blockade,
absent in Fig. 4, lasts for 10%–20% of the pump duration
and hence its observation should be within reach of modern
time-resolved ARPES techniques [53].
To summarize, we have shown the existence of a Floquet

topological phase in nondriven nonequilibrium matter and
how to steer a nontopological BI toward this phase with
laser pulses of finite duration. The nontrivial topology
emerges exclusively from the electron-hole Coulomb
attraction and it leaves unique fingerprints in time-resolved
ARPES spectra. We observe that the inclusion of a finite
exciton lifetime τ would damp the oscillations of the order
parameter. However, as long as τ ≫ ð1=ϵgÞ the excitonic
spectral features highlighted in this work could still be
observed. Experiments in this direction have already been
performed in bulk transition metal dichalcogenides [54–56]
having τ in the picosecond to nanosecond range [57–59]
and ϵg ∼ 1–2 eV. Our discussion is based on a paradig-
matic 1D model, but the results are general and can easily
be extended to 2D systems. In this case the px þ ipy

symmetry of the EC order parameter can be exploited to
generate a nonvanishing Chern number ð1=4πÞ R d2kn⃗ ·
ð∂kx n⃗ × ∂ky n⃗Þ that, again, counts the Majorana edge modes.
Materials with optically bright p excitons for realizing the
topological p-wave NEQ-EI phase include semiconducting
armchair nanotubes, in which only odd symmetry states are
optically active when light is polarized along the tube axis
[60–62], biased graphene bilayers [63], having them a 2p
state with an oscillator strength about 20 times larger than
that of the 1s state [64,65], semihydrogenated graphene
[66], and low-dimensional compounds with strong spin-
orbit coupling [67]. An s-wave NEQ-EI phase has been
recently observed in bulk GaAs [68]: the way to light-
induced topological phases of NEQ-EI is therefore
already open.
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