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How weak is the weak turbulence? Here, we analyze turbulence of weakly interacting waves using the
tools of information theory. It offers a unique perspective for comparing thermal equilibrium and
turbulence. The mutual information between modes is stationary and small in thermal equilibrium, yet it is
shown here to grow with time for weak turbulence in a finite box. We trace this growth to the concentration
of probability on the resonance surfaces, which can go all the way to a singular measure. The surprising
conclusion is that no matter how small is the nonlinearity and how close to Gaussian is the statistics of any
single amplitude, a stationary phase-space measure is far from Gaussian, as manifested by a large relative
entropy. This is a rare piece of good news for turbulence modeling: the resolved scales carry significant
information about the unresolved scales. The mutual information between large and small scales is the
information capacity of turbulent cascade, setting the limit on the representation of subgrid scales in
turbulence modeling.
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There are two quite different perspectives to look at the
evolution of a statistical system: fluid mechanics and
information theory. The first one is the continuum view-
point, where a Hamiltonian evolution of an ensemble is
treated as an incompressible flow in a phase space. Such
flows generally mix leading to a uniform microcanonical
equilibrium distribution. On the contrary, to deviate a
system from equilibrium, one needs external forces
and dissipation that break the Hamiltonian conservative
evolution and lead to compressible phase-space flows,
which generally produce extremely nonuniform measures
[1,2]. The second perspective is the discrete viewpoint of
information theory, where the evolution toward equilibrium
and entropy saturation are described as the loss of all the
information except integrals of motion. On the contrary, to
keep a system away from equilibrium, we need to act,
producing information and decreasing entropy.
Here, we make a step in synthesis of the two approaches,

asking: what is the informational manifestation of non-
uniform turbulent measures? Such measures are expected
to have a low entropy whose limit is set by an interplay
between interaction on the one hand and discreteness,
coarse graining, or finite resolution on the other hand. We
shall look at turbulence from the viewpoint of the mutual
information (MI), which measures effective correlations
between different degrees of freedom.
To keep a system away from equilibrium, environment

extracts entropy thus producing information—where is this
information encoded? Here, we consider turbulent systems
which can be treated perturbatively as long as their statistics
is close to Gaussian, such as weak wave turbulence
(a similar approach can be applied to a passive scalar

[3] and other systems). We show that the MI between wave
modes is encoded in cumulants (not described by the
traditional description in terms of occupation numbers [4]).
The information production builds higher and higher
correlations which concentrate sharper and sharper on
the resonant surfaces, driving the distribution toward a
singular measure. When nonlinearity is small, we show that
the entropy decay is due to the triple moment concentrating
on the three-wave resonance surface, see Fig. 1. It is unclear
yet how to describe the longtime asymptotic of the entropy
decay. When turbulence is driven by a random force, which
provides for a phase-space diffusion and smears singular-
ities, the entropy must saturate at a finite value, but the
difference with Gaussian random-phase approximation can
be large when the Reynolds number is large.
Consider a wave system defined by random amplitudes

satisfying i _ak ¼ ∂H=∂a�k with the Hamiltonian:

H ¼
X
k

ωkjakj2 þ
X
kpq

1

2
ðVkpqa�kapaq þ c:c:Þδkpþq:

Here, c.c means the complex conjugated terms, δkpþq is the
Kronecker delta, and we use the shorthand notation
ak ≡ aðkÞ, etc. Information theory (and processing real
data of experiments and modeling) requires a discrete
approach, so that we consider the number of modes N
finite. Let us stress that the results of this work cannot be
transferred to the continuous case. The medium is assumed
scale invariant, that is both ωk and V are homogeneous
functions of degree α and m, respectively. A central
problem is to describe the evolution of the phase-space
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distribution ρðfak; a�kgÞ. We assume that the second term in
the Hamiltonian is on average much smaller than the first
one and that the modes are independently distributed at
t ¼ 0. Then the occupation numbers nkδkk0 ≔ haka�ki satisfy
a closed kinetic equation [4–10]:

dnk
dt

≡ Stk ¼
X
k1k2

ImðVk12Jk12 − 2V�
1k2J

�
1k2Þδk1

k2þk; ð1Þ

J123ðtÞ ¼
eiω

1
2;3t − 1

ω1
2;3

V�
123ðn2n3 − n1n2 − n1n3Þ: ð2Þ

The brackets hfi indicate averaging with ρ, ha�i ajaki ¼
Jijkδijþk and ω1

2;3 ≡ ω1 − ω2 − ω3. Substituting (2) into (1)
gives the collision integral of the kinetic equation, which is
a direct analog of the Boltzmann equation for dilute gases:
Stk ¼

P
k1k2

ðUk12 − 2U1k2Þ with

Uijk ¼ πjVijkj2δðωi
jkÞδijþkðnjnk − nink − ninjÞ: ð3Þ

The interaction time tNLðkÞ ≃ nk=Stk is assumed much
larger than the wave period, so that the nonlinearity
parameter ϵ2k ¼ 1=ωktNLðkÞ is small. It is known that the
Boltzmann kinetic equation is the first term of a regular
cluster expansion only at thermal equilibrium, while even
weak nonequilibrium leads to either temporal growth or
space divergences already in the density expansion of
kinetic coefficients—viscosity, diffusivity, and thermal
conductivity [11–16]. The wave kinetic equation satis-
factory describes stationary and nonstationary spectra
of wave turbulence [4,6,8], yet the singularities
hidden behind this nice picture have not been analyzed.
Here, we open this Pandora’s box and start such an
analysis using a general approach of information
theory, assuming N and ϵ finite. Subtleties related to
limits N → ∞ and ϵ → 0 are subject of the ongoing
work [8–10,17,18].
The self-consistent weak-turbulence description of the

one-mode statistics in terms of the occupation numbers nk
[4–8,17] guarantees that the statistics of any single ampli-
tude stays close to Gaussian, i.e., qðjakjÞ is Rayleigh for
every k. That tempts one to approximate the whole

distribution using only the set of nk, assuming that the
amplitudes are independent and the phases are random:

qðfak; a�kgÞ ¼
Y
k

ð2πÞ−1qðjakjÞ; ð4Þ

which implies a Gaussian approximation for ρðfak; a�kgÞ.
Here, we show that ρ is quite different. The difference
between distributions can be measured by the relative entropy
(Kullback-Leibler divergence), which is the price of non-
optimal coding in information theory: DðρjqÞ ¼ hln ðρ=qÞi.
It was noted in [6] that random-phase approximation is not an
accurate description of wave turbulence, the relative
entropy quantifies that. Since q is a product, its entropy is
a direct sum of the entropies of noninteracting modes:
SðqÞ ¼ P

k ln ðeπnkÞ ¼
P

k Sk. The relative entropy then
coincides with the multimode mutual information DðρjqÞ ¼P

k Sk − SðρÞ ≔ Iðfak; a�kgÞ. We keep in mind that the
mutual information is defined for any subsystems, A and B,
via their entropies: IðA; BÞ ¼ SðAÞ þ SðBÞ − SðA;BÞ. For
example, the mutual information between two parts of the
message measures how much of the future part we can
predict given the part already received.
Starting with a Gaussian ρ at t ¼ 0, at the times

1=ωk ≪ t ≪ tNL, the distribution ρ can be determined
by the second and third cumulants using conditional
entropy maximum (see Supplemental Material [19] for
details):

ρ ¼ 1

Z
exp

�
−
X
k

αkjakj2 þ
X
kpq

Fkpqa�kapaq þ c:c:

�
: ð5Þ

For ρ to be normalizable, by (5) we mean a truncated series
in powers of ϵ. Here, we consider terms up to second order.
Then the parameters α, F of the distribution can be
expressed via the moments J and n:

F123 ¼
J�123

2n1n2n3
;

1

αi
¼ ni−

X
k1k2

jJi12j2þ2jJ12ij2
2n21n

2
2

: ð6Þ

We saw that the integral of the imaginary part of the third
moment saturates on the short timescale 1=ωk, so that

FIG. 1. Buildup of the normalized mutual information Iðk1 ¼ k2 þ k3;k2;k3Þ between three interacting capillary waves in
turbulence. Here, a ¼ k2=k3, cos θ ¼ k1 · k2=k1k2. Resonance surface is a line where MI develops a ridge at tω2 ≫ 1.

PHYSICAL REVIEW LETTERS 125, 104501 (2020)

104501-2



continuing concentration of the third moment on the
resonant surface had no influence on the kinetic
equation (3) which remains universally valid. However,
the relative entropy is the sum of the mutual information,
Ikiþkj;ki;kj

, of all resonant triads,

DðρjqÞ ¼
X
ki;kj

Ikiþkj;ki;kj
¼

X
kikj

jJiþjijj2
2ninjniþj

; ð7Þ

and is determined by the squared cumulant modulus,
which depends dramatically on whether the system
is in thermal equilibrium or not. The equilibrium
nk ¼ T=ωk is special because the last bracket in (2) is
proportional to ω1

2;3, so the third cumulant is regular
everywhere in k space and saturates after few wave periods,
J123ðtÞ → −V�

123T
2=ω1ω2ω3, so that the relative entropy is

smaller than the total entropy as long as nonlinearity is
small:

DðρjqÞ ¼ T
X
ij

jViþj;ijj2
ωiωjωiþj

≈
�
Eint

T

�
2

: ð8Þ

Away from equilibrium, on the contrary, with time the third
cumulant (2) concentrates in a close vicinity of the
resonance surface. It leads to a profound difference
between statistics of a wave system in equilibrium and
in turbulence. The equilibrium probability of a con-
figuration fa1; a2; a3g is insensitive to resonances, because
it is determined by the instantaneous interaction energy
divided by the (uniform) temperature: exp½−H=T�,
since F�

123 ¼ J123=2n1n2n3 ¼ −V�
123=2T in this case.

For turbulence, as long as (2) is valid, the interaction
energy is additionally weighted by the resonance factor
ðn−11 − n−12 − n−13 Þ=ðω1 − ω2 − ω3Þ as the probability is the
result of a time averaging. The measure in the phase space
is thus regular in equilibrium and tends to singular in
turbulence.
In turbulence, the squared cumulants in the relative

entropy (7) have a secular growth as long as (2) holds:
limt→∞jðe{Δt − 1Þ=Δj2 ¼ 2πtδðΔÞ. Liouville’s theorem
requires that this increase of the mutual information and
decrease in total entropy is exactly equal to the growth of
SðqÞ due to the change in nk according to (3):

dSðqÞ
dt

¼
X
k

1

nk

dnk
dt

¼
X

k1k2k3

1

2n1n2n3

d
dt

jJ123j2: ð9Þ

Indeed, the kinetic equation describes spreading of nk and
approach to equilibrium, accompanied by the growth of the
entropy of amplitudes SðqÞ, while the Hamiltonian
evolution by itself does not change the full entropy
SðρÞ. A nonequilibrium state requires pumping and
damping by the environment. If its action makes nk and
SðqÞ stationary, then the information production is

ultimately due to the entropy extraction by the environment:
dDðρjqÞ=dt ¼ −½dSðρÞ=dt�env. We see that stationarity of
the second moment does not mean stationary distribution.
On the contrary, the third moment (and other cumulants)
are getting more and more singular, reflecting the total
entropy decrease and the growth of the relative entropy
between the true distribution and the random-phase Gaussian
approximation:

DðρjqÞ ¼ t
X
kps

Ukps
npns − nknp − nkns

nknpns
> 0: ð10Þ

Contribution to the relative entropy of every cumulant
is proportional to its square. The fourth cumulant is
∝ V2, so its contribution is proportional to V4 and can be
neglected in this order. Formula (10) can be written as
D ¼ t

P
k t

−1
NLðkÞ and is the first term of the expansion in

powers of time, valid at t < tNL. The terms with higher
powers of time will involve higher cumulants. One can
estimate t−1NLðkÞ ≃

P
j jVkþj;kjj2nj=ωj ≃ ωkϵk ∝ k2mþd−s−α.

At t ≃ tNLðkÞ, when nonlinearity at the three-wave resonant
surfaces ωj þ ωk ¼ ωjþk is getting of order unity, the triple
moment is expected to stabilize. At that stage the entropy
change already is not small, but could be comparable to the
total entropy. At later time, the total entropy decrease is
modified, but does not necessarily stop, contrary to what one
may suggest. The reason is that the entropy extraction
depends on the environment. We illustrate that for two
qualitatively different ways of pumping the system.
Let us first add to the rhs of {∂ak=∂t ¼ ∂H=∂a�k

a random force and a damping, fk − γkak, with
hfkð0Þf�jðtÞi ¼ δkjPkδðtÞ. When force and damping
are in detailed balance, that is ωkPk=γk is independent
of k, the system is brought to thermal equipartition
where the entropy is maximal and stationary. If,
however, the detailed balance is broken, the environment
provides for the entropy change which depends on the
distribution:

�
dSðρÞ
dt

�
env

¼
X
k

Pk

Z Y
i

daida�i
2{ρ

���� ∂ρ∂ak
����
2

−
X
k

2γk: ð11Þ

Averaging now is over the force statistics. Let us show that
if the steady distribution ρ exists, it must have very sharp
gradients, proportional to the Reynolds number, so that the
entropy SðρÞ is much smaller than SðqÞ. At the initial
perturbative stage, the distribution is given by (5); we
substitute (2), (6) into (11) and obtain

X
k

Z Y
i

daida�i
2{

ρ−1
���� ∂ρ∂ak

����
2

¼
X
k

αk þOðJ4Þ: ð12Þ

Here, αk is given by (6) where the last two terms are
initially small. The pumping then produces much less
entropy than the dissipation region absorbs (any
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nonequilibrium state consumes information, that is exists
between a low-entropy source and a high-entropy sink).
Indeed, the energy spectral density ωjnj is a decreasing
function of j in a direct energy cascade, so

P
k Pkn−1k <

ðωjnjÞ−1
P

k ωkPk for any j > kpump and

�
dSðρÞ
dt

�
env

<
1

ωjnj

X
k

ðωkPk − 2γkωknkÞ ¼ 0 ð13Þ

follows from the energy balance
P

k ωkðPk − 2γknkÞ ¼ 0.
For a developed turbulence with a wide inertial
interval, kdamp=kpump ¼ Re ≫ 1, the spectrum is
nk ∝ k−s, and the ratio of the negative damping term to
the positive pumping term in (11) can be estimated as
ωpumpnpump=ωdampndamp ≡ Res−α ≫ 1. Direct energy cas-
cade requires s > α, and indeed the entropy absorption by
the small-scale dissipation region by far exceeds the
entropy production by the pumping region (it is other
way around for an inverse cascade [29]). However, this is
only true at the initial perturbative stage. As time proceeds,
the growth of the cumulants and deviation of distribution
from Gaussian decreases dD=dt by increasing the pumping
contribution. For developed turbulence, the gradients
∂ρ=∂ak in the pumping region must increase by a large
factor Reðs−αÞ=2 to reach the steady measure, which is thus
very close to singular.
Another way of creating nonequilibrium is by adding to

the Hamiltonian equations of motion the terms γkak, where
positive γk corresponds to an instability and negative to
dissipation. Averaging in this case is over the ensemble of
initial conditions. The entropy rate of change dSenv=dt ¼
2
P

k γk ≤ 0 is now independent of the distribution and
negative for a steady direct cascade for the same reasons of
the energy conservation

P
k 2ωkγknk ¼ 0 and ωknk being

larger in the instability region. That means that the
entropy decreases nonstop and the measure goes all the
way to singular unless coarse graining saturates the entropy
decrease. A profound difference between turbulent
measures generated by additive force and instability was
probably first noticed in [20].
To verify our other predictions, one needs to obtain

numerically and experimentally multidimensional prob-
ability distributions. The simplest is to start from two
modes. Because of translation invariance, the second
moment, haka�pi ¼ 0 for k ≠ p, but the fourth cumulant
is generally nonzero and so is the mutual information
(introduced in [30] for one-dimensional models of
turbulence). In thermal equilibrium and for nonresonant
modes in turbulence, steady-state MI must be small
for small nonlinearity: Ik;p ¼ jJk;p;kþpj4=ð4nknpnkþpÞ2 þ
jJk;p;k−pj4=ð4nknpnk−pÞ2 ∝ ϵ4 for two modes. The ϵ2

contribution requires minimum three modes: Ik;p;q ¼
SðakÞþSðapÞþSðaqÞ−Sðak;ap;aqÞ¼ jJk;p;qj2=2nknpnq.
On the contrary, we expect order-unity cumulants (as seen,
for instance, in [31]) and substantially non-Gaussian

stationary joint distribution for resonant modes in turbu-
lence. Finding that distribution is a well-posed task for a
future work.
Our consideration of the mutual information growth

allows solving the old puzzle: why the direction of the
formation of the turbulent spectrum nk ∝ k−m−d is deter-
mined by the energetic capacity? When the total energyP

k ωknk diverges at infinity (m < α, infinite capacity), the
formation proceeds from large to small scales, that is from
pumping to dissipation [32]. In the opposite finite-capacity
case, m > α, formation of the cascade was surprisingly
found to start from small and proceeds to large scales, that
is opposite to the cascade direction [6,33,34]. We note
that it is the growth of the density of three-mode
mutual information (learning rate) in a ball of radius k,
IðkÞ≡P

p≤k Ik;p;k−p, that must determine the direction of
the evolution, since it quantifies the buildup of multimode
correlations necessary for a steady nonequilibrium state.
For nk ∝ k−s ¼ k−m−d, the growth rate of IðkÞ scales as
dIðkÞ=dt ∝ k2mþd−s−α ¼ km−α. One then can characterize
the directionality of the information transfer by the sign of
m − α—when it is positive, correlations must be esta-
blished first at small scales and then propagate to larger
scales. That consideration puts on the firm information-
theoretical ground the heuristic arguments of [33]. Since
the energetic capacity is also finite for the Kolmogorov
spectrum of the incompressible turbulence, a tantalizing
question is whether it is also formed starting from small
scales. Note that we characterized evolution by the mutual
information growth rate, which is to be distinguished from
the transfer entropy [35], that characterizes cause-effect
relationships in a steady state. Note that though the MI
between noninteracting Gaussian modes is zero, the MI
between points in the physical space, Iðx1;…; xNÞ ¼
N lnðeπN−1PN

k¼1 nkÞ −
P

k lnðeπnkÞ, is positive whenever
nk are not all the same.
Let us briefly compare our findings with similar effects

near thermal equilibrium. In the simplest case of the linear
response of a dilute gas, nonequilibrium anomalies in
cumulants appear as long-distance divergencies due to
Dorfman-Cohen memory effects in multiple collisions
[11–13,36], see nice explanation in [12] (we wonder
why Peierls himself did not recognize that similar effects
must be behind the wave kinetic equation, which he first
derived). Another case is the two-particle single-time
correlation function in two distinct space points. Outside
of the radius of molecular forces, this correlation is zero in
thermal equilibrium and nonzero away from it [15,16].
Nonequilibrium buildup of long spatiotemporal correlation
is a counterpart to our spectral singularities.
Another analogy worth exploring is with many-

body localization [37], where phase correlations prevent
thermalization and keep the system in a low-entropy state.
There is a vast literature devoted to cumulant anomalies
away from equilibrium, see, e.g., books [1,2,12–16] and
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numerous references there. We believe that comple-
mentarity of information theory and singular measures
will lead to a unified approach to these anomalies.
We conclude reiterating our main results: the probability

distribution of weak wave turbulence is very far from
Gaussian, the mutual information is substantial for
resonant modes.
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