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In a bearing state, touching spheres (disks in two dimensions) roll on each other without slip. Here we
frustrate a system of touching spheres by imposing two different bearing states on opposite sides and search
for the configurations of lowest energy dissipation. If the dissipation between contacts of spheres is viscous
(with random damping constants), the angular momentum continuously changes from one bearing state to
the other. For Coulomb friction (with random friction coefficients) in two dimensions, a sharp line separates
the two bearing states and we show that this line corresponds to the minimum cut. Astonishingly, however,
in three dimensions intermediate bearing domains that are not synchronized with either side are
energetically more favorable than the minimum-cut surface. Instead of a sharp cut, the steady state
displays a fragmented structure. This novel type of state of minimum dissipation is characterized by a
spanning network of slipless contacts that reaches every sphere. Such a situation becomes possible because
in three dimensions bearing states have four degrees of freedom.
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A bearing is a set of spheres (discs in two dimensions)
which, with the position of their centers fixed, roll on each
other without any slip at their contacts [1–3], transferring
torque without dissipation. A sufficient condition to achieve
a bearing state is to ensure that the graph of contacting
spheres is bipartite, that is, all loops in the graph have an even
number of spheres [3,4]. In two dimensions, the tangential
velocities v at all contacts must be identical, so that the
bearing state is uniquely defined by v. In three dimensions,
other types of bearing states can be identified [4].
The concept of bearings plays an important role on the

dynamics of dense packings of particles [3–22]. Bearings
obtained by construction that completely fill space [23–28]
can support large pressures while allowing for sliding
movement. Moreover, it was shown that the synchroniza-
tion process necessary to reach a global bearing state can be
substantially enhanced by adjusting the inertial contribu-
tion of individual rotors [29]. When the particles move,
inducing a complex and changeable force network [30], as
it is the case in shear bands, bearing states form sponta-
neously [31,32]. Because of these properties, it was
suggested [1,12,31] that such bearing states may explain
the existence of “seismic gaps,” namely, regions in tectonic
faults that should be moving, but where no earthquake
activity has been detected for a long time [33,34].
While the transfer of momentum through disordered

systems has been studied extensively, much less is known
about the transfer of torque. In particular, when contacts
dissipate due to Coulomb friction instead of viscous forces,
systems can get stuck in particular configurations. Here we
investigate a system of touching rotors subjected to
frustrating boundary conditions, that is, systems where

one side is forced to be in one bearing state, while on the
other side another bearing state is imposed. Between these
two bearing states there must be slipping contacts with
random friction coefficients where energy is dissipated.
Following its natural dynamics, a bearing system will settle
to one configuration, albeit frustrated, of minimum
energy loss.
In our computational model, we place touching spheres

(disks in two dimensions) on a regular grid in such a way
that their positions are fixed but they can rotate. At every
contact a tangential friction force FtðijÞ acts on the pair of
particles i and j. We consider two cases, namely, either this
force is viscous,

FtðijÞ ¼ ηijvrðijÞ; ð1Þ

where η is a damping coefficient, and v⃗r is the relative
slipping velocity

v⃗rðijÞ ¼ ω⃗j × r⃗ji − ω⃗i × r⃗ij; ð2Þ

or Coulomb-like,

FtðijÞ ¼
(
FsðijÞ if vrðijÞ ≠ 0

μijFn if vrðijÞ ¼ 0;
ð3Þ

where Fs and Fn are the static friction and the normal force
on the contact, respectively. In order to find the stationary
state, we use two different numerical techniques. On one
hand, we find the configuration that minimizes the dis-
sipation power P, which is defined as
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P ¼ 1

2

XN
i

Xfig
j

F⃗tðijÞ · v⃗rðijÞ; ð4Þ

where the sum in j goes over the set fig of disks that are in
contact with disk i. We use about 106 iterations steps of
gradient descent [35] in order to find the state that
minimizes P ¼ Pðω⃗1; ω⃗2;…; ω⃗nÞ. For a viscous friction
force, the components of ∇ω⃗1;ω⃗2;…;ω⃗n

P can be written as

∂P
∂ωi;k

¼ 2
X
j

ηijðω⃗i × r⃗ij − ω⃗j × r⃗jiÞ · ðk̂ × r⃗ijÞ; ð5Þ

while for a Coulomb-like friction force they become

∂P
∂ωi;k

¼ Fn

X
j

μij
ðω⃗i × r⃗ij − ω⃗j × r⃗jiÞ
kω⃗i × r⃗ij − ω⃗j × r⃗jik

· ðk̂ × r⃗ijÞ; ð6Þ

where the sum in j goes just over the slipping contacts of
sphere i. In a second approach, we use a Cundall-Strack
scheme [36,37] in order to obtain an approximation for the
friction force

F⃗t ¼
(
μkFnðv⃗r=kv⃗rkÞ if kF⃗�

sk > μskF⃗nk
F⃗�
s otherwise:

ð7Þ

Here, μs and μk are the static and the dynamic friction
coefficients, respectively, and F⃗�

s mimics the static friction
force

F⃗�
s ¼ −Ktδ⃗ − Atv⃗r: ð8Þ

Static friction is idealized as an imaginary tangential spring
used to keep the contact point slipless, where δ⃗ is the
elongation of this spring, Kt its stiffness, and the constant
At damps any oscillation in the synchronized contacts. For
simplicity, we use a viscous damping force proportional to
the relative tangential velocity at the contact point v⃗r. In our
simulations K ¼ 105, A ¼ 103, and Fn ¼ 50 for discs
(spheres in three dimensions) of radii 0.5. These values
ensure that for very small δ ¼ 10−4 the threshold of
dynamic friction is reached. We tested different values
of Fn and greater values of K and A, but no significant
differences were observed.
For the elongation δ⃗, we use the following representa-

tion:

δ⃗ ¼
�−ðμkkF⃗nk=KtÞF⃗�

s if kF⃗�
sk > F�

smax ¼ μskF⃗nk
δ⃗ðt0Þ þ R

t
t0 v⃗rdt

00 otherwise;
ð9Þ

where t0 is the time when v⃗r changes for the first time after
F�
s reaches the threshold F�

smax [36,37]. We use Gear’s
algorithm [38,39] to integrate the equations of motion,

I
∂2ω⃗i

∂t2 ¼
Xfig
j

r⃗ij × F⃗tðijÞ; ð10Þ

together with the differential equation for the elongation.
The Cundall-Strack approach provides a way to solve the

equations of motion and simulate the evolution of the
system. The gradient descent finds the state of minimal
dissipation without giving information on the dynamics.
The advantages are that it allows simulations of larger
systems and discriminate slipless contacts. In all cases, the
system always reached the same final state regardless of the
initial conditions or the method employed, suggesting that
the dynamics naturally selects a unique state of minimum
dissipation [40]. This observation is compatible with the
minimum entropy production principle [41].
In all simulations with viscous friction, the damping

coefficients between contacts are randomly chosen accord-
ing to a uniform distribution in the interval 0.1 ≤ η ≤ 1.0.
For simulations with Coulomb-like friction, the coefficients
μ ¼ μs ¼ μk are also randomly chosen uniformly between
0.1 and 1.0 for each contact between spheres (disks in two
dimensions). We maintain the magnitude of the angular
velocities of the top ωT and bottom ωB planes (rows in two
dimensions) of the system in different fixed bearing states.
In two dimensions, the disks at these rows in even and odd
columns spin in opposite directions, assuring that their
contacts are slipless. In three dimensions, the bearing states
are achieved by imposing that the spheres at the top and
bottom planes spin with angular velocities that point to a
45° diagonal direction �ðx̂þ ŷÞ orthogonal to the vertical
direction ẑ.
We first consider a two-dimensional bearing where the

centers of the discs are put on a square lattice, as shown in
Fig. 1. The disks of the top row are kept rotating, ωT > 0,
while those at the bottom are static, ωB ¼ 0. After a long
time, the system reaches a stationary state which, for the
Coulomb case, corresponds to a global minimum in
dissipated energy since it always decreases monotonically
in time. In Fig. 1, we compare viscous damping and
Coulomb friction. While in the first case the angular
velocities change continuously from top to bottom, for
Coulomb friction the system splits in two different fixed
bearing states, where the initially free discs in the middle
finally follow either the rotating bearing state on the top or
the fixed bearing state on the bottom. Between the red and
blue regions of Fig. 1 emerges a line of slipping contacts
separating the two fixed bearing states.
In the observed stationary states, we find only two

domains, one synchronized with each boundary condition.
Therefore, in the interface, all slipping contacts have the
same relative velocity v⃗rðijÞ. Consequently, the dissipation
power P is proportional to the sum of the dynamic friction
coefficients in the slipping contacts. We can define a
network of contacts where the vertices are the centers of
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the disks, and an edge exists between any contacting disks.
In two dimensions there is a dual network with vertices in
the gaps between spheres. Interestingly, the line of slipping
contacts is exactly the minimum cut or shortest weighted
path in the dual network, considering as weights of the
bonds the friction coefficients of the corresponding con-
tacts, for any distribution of random weights. The shape of
the interface should only depend on the friction coefficients
and not on the type of bearing states imposed externally.

This is indeed the case if one replaces the lower fixed
spheres by another nonstatic bearing state. We can see a
close connection of this problem with the max-flow min-
cut theorem [42–44].
In three dimensions, we also observe for viscous

damping in the stationary state a continuous transition
between the two fixed bearing states. In Fig. 2, we show the
dissipation power as a function of time for a 3 × 3 × 3
system of spheres with Coulomb friction in their contacts.
As opposed to two dimensions, we do not find in the
stationary state a single surface dividing two different fixed
bearing states, but many spheres that do not belong to either
of them. In fact, even starting with an initial condition in the
minimum-cut configuration, the system evolves towards a
stationary state that has a smaller dissipation power. In
other words, in the three-dimensional case, the minimum
cut in the network of friction coefficients is generally not
the state of lowest possible dissipation.
The same behavior is observed for larger systems. In

Fig. 3(a), we see a 10 × 10 × 10 cubic bearing, where many
spheres in the middle of the bearing are in intermediate
bearing states. In this case, the spheres at the top and
bottom planes are spinning as fixed bearing states
with ωT ¼ 10ωB. For a 32 × 32 × 32 bearing system,

FIG. 2. Dissipation power as a function of time for a cubic
packing of touching spheres of size 3 × 3 × 3 with Coulomb
friction in the contacts, modeled by Cundall-Strack. The spheres
at the bottom plane are constrained to remain static, ωB ¼ 0,
while those at the top plane rotate with a given angular velocity,
ωT > 0, as a fixed bearing state. As in the two dimensions case,
here the system evolves to the state of minimum dissipation. In
three dimensions, however, the energy dissipation becomes
smaller than when one just splits the system in two domains
by the minimum-cut surface, and in the stationary state some
spheres do not belong to either of the two fixed bearings. Here P0

and P∞ are the initial and stationary dissipation powers, respec-
tively. We also show snapshots of the system, one at the
beginning and one at the end of the evolution. The boxes indicate
the positions of the imposed boundary conditions.

(a)

(b)

FIG. 1. Stationary configurations for (a) viscous damping and
(b) Coulomb friction in the contacts of a packing of disks whose
centers are the vertices of a square lattice of size 10 × 10. The
boxes indicate the positions of the imposed boundary conditions.
Disks at the bottom are constrained to remain static, ωB ¼ 0,
while those at the top rotate with a given angular velocity,
ωT > 0, as a fixed bearing. Except for the bottom and top rows,
all angular velocities of the disks were initially set randomly.
Regardless of the initial condition, given the disorder in the
friction coefficients, the system always evolves to the same
stationary configuration. The color bar corresponds to the ratio
between the moduli of the angular velocities ω of the spheres and
the imposed modulus of the angular velocities at the top boundary
ωT . There is no slipping or dissipation in the contacts between
disks of the same color. In (b), the interface between the two
bearing states is identical to the minimum cut corresponding to
the friction coefficients of the contacts. This equivalence is due to
the fact that dissipation occurs only at the interface. Simulations
with 1000 different sets of disordered friction coefficients showed
that the boundary corresponds to the minimum cut in 983 cases.
The remaining cases corresponded to systems with two distinct
minimal cuts with values very close to each other. In such cases,
the final state can present two boundaries at these cuts.
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the distribution of power dissipation at the contacts ranges
over eleven orders of magnitude (see Supplemental
Material [45]), although 0.1 ≤ μ ≤ 1.0. In this case, due
to the large number of possible configurations, we could
not determine the exact minimum-cut surface. However, as
in the 3 × 3 × 3 case, Fig. 3(a) shows that, in the state of
minimum dissipated power, some spheres have intermedi-
ate angular velocities.
At this point, two relevant questions arise. First, how do

these states with dissipation lower than the minimum-cut
configuration appear? Second, what are the distinctive
properties of these newly discovered stationary states of
minimum dissipation? We identified for the configuration
shown in Fig. 3(a) all slipless contacts and discovered that
their network spans throughout the system, namely, the two
opposite fixed bearing states are connected by paths of
slipless contacts as shown in Fig. 3(b) (gray lines). In
Fig. 3(b) we show one of these paths (highlighted in green),
while the spheres along the same path are depicted in

Fig. 3(c) with their corresponding three-dimensional rota-
tions. In two dimensions, as shown in Fig. 1(b), we have
slip along the entire minimum cut, so that such connecting
paths of slipless contacts cannot exist. Therefore a con-
necting path of slipless contacts, like the green one shown
in Fig. 3(b), must go through several planes, as shown in
Fig. 4. The presence of these paths in the system somehow
prevents the global frustration imposed by the fixed bearing
states at the bottom and top boundaries. There are a few
links through which most connecting paths go, that is, these
links have large in-betweeness. In addition, we observe that
the network of slipless contacts attains practically every
sphere, as depicted in Fig. 3(b). Changing the imposed
bearing states at the boundaries to other bearing states does
not change the network of slipless contacts, showing that,

(a)

(b)

(c)

FIG. 3. (a) Configuration of minimum dissipation of a cubic
packing of size 10 × 10 × 10 with Coulomb friction in the
contacts, obtained with the gradient-descent method. The boxes
at the bottom and top indicate the imposed boundary conditions.
The spheres at the top and bottom planes are spinning as fixed
bearing states with ωT ¼ 10ωB. (b) Network of slipless contacts
(in gray) of the configuration shown in (a). The highlighted green
path, composed of slipless contacts, connects the top and bottom
boundaries. In (c) the spheres along the same path are shown with
their corresponding three-dimensional rotations.

(a)

(b)

(c)

FIG. 4. Cuts of the configuration along the three green planes in
Fig. 3(a). The gray lines correspond to slipless contacts and the
green lines correspond to the pieces composing the path, of
slipless contacts, that connects bottom and top boundaries, as
shown in Fig. 3(b).
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as in two dimensions, it only depends on the disorder in
friction coefficients.
The main reason for the difference between two and

three dimensions is that in two dimensions the bearing state
has only 1 degree of freedom, namely, the tangential
velocity, while in three dimensions there are four indepen-
dent degrees of freedom [3]. In three dimensions, the
tangential velocities v⃗rðijÞ at slipping contacts depend on
the sum of two vector products, Eq. (2), which implies a
coupling between the components of the angular velocities.
In summary, we found that while for viscous damping

there is a continuous change between bearing states, for
Coulomb friction jumps appear: In two dimensions, a sharp
interface separates the two bearing states, which is identical
to the minimum cut. In three dimensions, we discovered a
new type of final state in which the network of contacts
without slip spans from one fixed bearing state to the other,
attaining practically every sphere of the system. Our
frustrated bearing in three dimensions with Coulomb
friction is an example of a new kind of separation or
fracture in a system consisting of an entire set of surfaces
and fragments in between, reminiscent of shear failure of
rocks under moderate confining pressure. As a future
challenge, it would be interesting to study the bottlenecks
and their in-betweeness in more detail.
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