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In this Letter, we present a universal approach enabling the full characterization of the quantum
properties of a multimode optical system in terms of squeezing and morphing supermodes. These are
modes undergoing a continuous evolution that allow uncoupling the system dynamics in terms of
statistically independent physical observables. This dynamical feature, never considered so far, enables the
description and investigation of an extremely broad variety of key resources for experimental quantum
optics, ranging from optical parametric oscillators to silicon-based microring resonators, as well as
optomechanical systems.
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Multimode quantum optics in a continuous variables
(CVs) regime is at the heart of a multitude of quantum
applications, encompassing quantum communication [1,2]
and quantum metrology [3], as well as quantum compu-
tation [4] via cluster states [5–7].
Commonly, the treatment of multimode optical systems

is based on the identification of the so-called supermodes
[8–10]. These are coherent superpositions of the original
modes that diagonalize the system dynamics and permit
one to rewrite multimode CV entangled states as a
collection of independent squeezed states [11]. The knowl-
edge of supermodes allows us to optimize the detection of
the nonclassical information on the state [8,9,12], generat-
ing and exploiting CV cluster states in optical frequency
combs [13–15] or in multimode spatial systems [16], as
well as engineering complex multimode quantum states
[17,18]. In experiments, as they are statistically indepen-
dent, supermodes can be measured with a single homodyne
detector, thus considerably reducing the experimental over-
head [15].
The ongoing development of new devices and plat-

forms for quantum optics is enlarging the range of
situations requiring a multimode dynamics-decoupling
treatment. Traditional theoretical methods, however, are
not always adequate and leave uncovered a large set of
situations that are relevant for quantum technologies. This
is, for instance, the case of the third order nonlinear
interactions at the heart of integrated quantum photonics
platforms in silicon and silicon nitride [19,20]. Our work
develops a universal approach able to deal with this
increasing variety of multimode optical systems. The
enabling key concept is the observation that supermodes
must be, in general, considered as dynamic function of a
continuous parameter connected to the space or the time
and frequency degrees of freedom. The image of a

continuous transformation of supermode shape suggests
us to call them “morphing supermodes”. This theoretical
work explores and characterizes the temporal and spectral
properties as well as the quantum properties of these new
powerful objects. We observe that the notion of contin-
uously evolving supermodes is unexplored by traditional
theoretical approaches, which are, in general, applied to
systems under stringent a priori hypotheses, such as the
absence of linear and/or nonlinear dispersion phenomena,
preventing observation of these features [10].
We focus here on a generic below-threshold resonant

system that can present linear and nonlinear dispersion.
Nevertheless, our approach covers any multimode system
evolving under the most general quadratic Hamiltonian,
including when obtained from a perturbative develop-
ment. It can treat also single pass configurations [21,22]
for which, in general, the supermode structure is studied
at the output end of the nonlinear crystal and no attention
is payed to spatial propagation effects. Our approach
sheds light on the problem of adequate detection choices
in the experimental measurement of multimode quantum
features. Moreover, in general, it has a major impact
on the investigation of multiple scenarios: these encom-
pass low-dimensional systems, such as single- or double-
mode squeezing in detuned devices [23–25] and in
optomechanical cavities [26,27] or spatial entanglement
in waveguide arrays [16], and highly multimode devices,
such as those used for the generation of squeezed light
via four-wave mixing in integrated systems on silicon
photonics [19,28], as well as problems related to con-
densed matter [29,30].
Multimode Langevin equations.—We consider the most

general time-independent quadratic Hamiltonian describ-
ing the dynamics of N boson modes ân in the interaction
picture
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ℏ
2
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m;n

½Fm;na
†
ma

†
n þ H:c:�: ð1Þ

In this expression, the matrix F is a complex symmetric
matrix F ¼ FT , while G is a Hermitian complex matrix,
verifying G ¼ G† [31]. Boson operators an and a†n satisfy
the commutation relations ½an;a†m�¼ δn;m and ½an; am� ¼ 0.
In practical situations, the matrix F is of the same kind as
the one describing spontaneous parametric down-conver-
sion in χð2Þ or χð3Þ interactions, under the approximation of
undepleted pumps [10,32]. The very general shape of the
matrix G allows taking into account frequency conversion
processes [21], self- and cross-phase-modulation in χð3Þ
media [32], and, in resonant systems, it can also include
the mode detunings from perfect resonance and linear
dispersion effects.
For a cavity-based system, boson operators ân and â†n

label the intracavity modes. In the Heisenberg representa-
tion, the Hamiltonian operatorH permits one to derive a set
of linear coupled quantum Langevin equations describing
the dynamics of the system observables below the oscil-
lation threshold. In terms of amplitude and phase quad-
ratures, xn¼ð1= ffiffiffi

2
p Þða†nþanÞ and yn ¼ ði= ffiffiffi

2
p Þða†n − anÞ,

Langevin equations read, in a compact matrix form

dRðtÞ
dt

¼ ð−ΓþMÞRðtÞ þ
ffiffiffiffiffiffi
2Γ

p
RinðtÞ: ð2Þ

In the previous expression, RðtÞ ¼ ðx1ðtÞ;…; xNðtÞjy1ðtÞ;
…; yNðtÞÞT is a column vector of quadrature operators, Γ ¼
diagfγ1;…; γN jγ1;…; γNg is a diagonal matrix containing
the mode-dependent cavity dampings. RinðtÞ is the quad-
rature vector of input modes entering the system via losses.
We stress that the quadratures of the cavity output fields
RoutðtÞ can be straightforwardly obtained with the input-
output relations RinðtÞ þ RoutðtÞ ¼

ffiffiffiffiffiffi
2Γ

p
RðtÞ [33]. The

mode interaction matrix M ∈ R2N×2N explicitly depends
on the matrices F and G that appear in the Hamiltonian
operator (1) via the relation

M ¼
� Im½Gþ F� Re½G − F�
−Re½Gþ F� −Im½Gþ F�T

�
; ð3Þ

where matrices Re½G − F� and Re½Gþ F� are both sym-
metric. We note that the system threshold is defined by the
eigenvalue λ0 of M − Γ with the highest real part for
which Re½λ0� ¼ 0.
Finding the system supermodes corresponds to identify-

ing the linear combinations of the original an and a†n that
permit one to diagonalizeM, so as to uncouple the evolution
equations, while preserving the symplectic structure of the
problem [9,10]. However, in general, M cannot be diagon-
alized by symplectic unitary transformations apart from
special cases for which the matrix G is null [34]. As a

consequence, the system does not admit, in general, a set
of supermodes in the traditional sense that do not change
their shape during the system evolution. We show that the
problem of the characterization of its quantum properties in
terms of statistically independent physical observables can
be achieved in terms of morphing supermodes, provided we
adopt a novel approach. As a matter of fact, besides low-
dimension systems whose equations can be solved directly
[35], the traditional analysis of resonant systems is confined
to those presenting χð2Þ nonlinearities and mode-independent
detuning [36]. These limitations arise from the fact that
standard symplectic diagonalizationmethods, such as Bloch-
Messiah decomposition (BMD) [37,38], limit their analysis
to problems for which dynamic evolution can be disre-
garded. Conversely, in a general situation, as we are
analyzing, pertinent transformations are matrix-valued func-
tions of space, frequency or time and demand an adequate
extension of symplectic approach.
Generalized symplectic approach.—As a first step, we

show that, even in the most general case considered here,
the transformation associated with Eqs. (2) and connecting
the input and output modes is indeed symplectic in a more
general sense. By doing so, we can then apply to it a
generalized version of BMD.
Steady-state solutions of Eqs. (2) can be obtained in the

frequency domain by application of the Fourier transform
to the slowly varying envelopes [33]

RðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
e−iωtRðtÞdt: ð4Þ

The quadratures of the output modes read as

RoutðωÞ ¼ SðωÞRinðωÞ; ð5Þ

where SðωÞ is the transfer function of the linear system (2)

SðωÞ ¼
ffiffiffiffiffiffi
2Γ

p
ðiωI þ Γ −MÞ−1

ffiffiffiffiffiffi
2Γ

p
− I; ð6Þ

where I is the identity matrix of R2N×2N . This is a complex
matrix-valued function, verifying Sð−ωÞ ¼ S�ðωÞ, which
assures the reality of S in the time domain. In matrix form,
the commutators of input mode quadratures can be written

as ½RinðωÞ;RT
inðω0Þ� ¼ Ωδðωþ ω0Þ, where Ω ¼

�
0 I
−I 0

�
,

is the N-mode “symplectic form” and I is the identity
matrix of RN×N [38]. In order to guarantee that the
commutators are preserved for RoutðωÞ, the transformation
SðωÞ must verify

∀ω ∈ R∶ SðωÞΩSTð−ωÞ ¼ Ω: ð7Þ

In the case we are dealing with, this condition is easily
verified (see the Supplemental Material [39]) by noticing
that the matrixM of Eq. (3) is a Hamiltonian matrix, i.e., it
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verifies the relation ðΩMÞT ¼ ΩM and that the matrix Γ is
skew Hamiltonian ðΩΓÞT ¼ −ΩΓ. Expression (7) extends
the standard symplecticity condition known in the literature
[38]. More precisely, it defines a set of transformations
that depend on a real continuous parameter—the frequency
ω—and such that every matrix obtained from SðωÞ with ω
assigned belongs to the “conjugate symplectic group”
Sp�ð2N;CÞ [40],

Sω ¼ fSðωÞ ∈ Cωj∀ω ∈ R; SðωÞ ∈ Sp�ð2N;CÞg; ð8Þ

where Cω is the set of matrix-valued functions in C2N×2N

that are smooth with respect toω. For the sake of simplicity,
we will refer to transformations belonging to Sω as “ω
symplectic.”
In a general way, ω symplectic transformations admit

a decomposition that is a smooth function of the real
parameter, as expected to describe the mode continuous
evolution in time and frequency. In other words, for any
element of Sω, there exists an analytical Bloch-Messiah
decomposition (ABMD) (see Supplemental Material [39])

SðωÞ ¼ UðωÞDðωÞV†ðωÞ; ð9Þ

where UðωÞ, DðωÞ, and VðωÞ are smooth matrix-valued
functions such that, for any assigned value of ω, UðωÞ;
VðωÞ ∈ Sp�ð2N;CÞ ∩ Uð2NÞ, with Uð2NÞ the unitary
group. The matrix DðωÞ ¼ diagfd1ðωÞ;…; dNðωÞjd−11 ðωÞ;
…; d−1N ðωÞg with dmðωÞ ≥ 1 for m ¼ f1;…; Ng, for all
ω ∈ R. We note that these matrix-valued functions can be
chosen, after conjugating Eq. (9), so to verify the same
property as S�ðωÞ ¼ Sð−ωÞ.
Expression (9) shows that a BMD for SðωÞ, in the case

of a generic quadratic Hamiltonian, exists and depends on a
continuous parameter. From it, the quadrature of superm-
odes of system (2) can be obtained as R0

outðωÞ ¼
U†ðωÞRoutðωÞ, where we have assumed input vacuum
state. We remark that the shape of the supermodes
themselves depends on the continuous parameter: this
result shows that, in practical situations, the optimal
detection modes change with the analysis frequency ω.
The connection with Bogoliubov transformations [41,42] is
discussed in the Supplemental Material [39].
To conclude, we note that Eqs. (7) and (9) have counter-

parts in the time domain. The matrix-valued Green’s
function SðtÞ of (2), corresponding to the inverse Fourier
transform of SðωÞ, is symplectic in the sense that
∀ t; t0 ∈ R,

Z þ∞

−∞
Sðt − τÞΩSTðt0 − τÞdτ ¼ Ωδðt − t0Þ; ð10Þ

and its ABMD reads

SðtÞ ¼
Z þ∞

−∞
UðτÞDðt − τ þ τ0ÞVðτ0Þdτdτ0; ð11Þ

where UðtÞ and VðtÞ are real matrix-valued Green’s
functions. They are symplectic in the sense of (10)
and orthogonal in the sense ðU⋆UTÞðtÞ ¼ IδðtÞ and
ðV⋆VTÞðtÞ ¼ IδðtÞ, with ⋆ as the cross-correlation product.
The Green’s function DðtÞ is the diagonal matrix-valued
obtained as the inverse Fourier transform of DðωÞ. It is real
and even, since DðωÞ is real and even.
Spectrum of quantum noise.—We now characterize the

quantum statistical properties of the output steady states
Rout and of their supermodes R0

out. To this purpose, we
consider a generic linear combination Zθ of Rout specified
by the normalized line vector QðθÞ consisting of real
coefficients

Zθ ¼ QðθÞRout; ð12Þ

where θ are the 2N − 1 angles parametrizing QðθÞ.
The spectrum of quantum noise can be expressed by

means of the Wiener-Khinchin theorem in terms of the self-
correlation of Zθ as

ΣθðωÞ ¼
Z þ∞

−∞
e−iωτ hZθðtþ τÞZθðtÞi dτ: ð13Þ

By making use of expression (12) in the frequency domain,
Eq. (13) can be written as

ΣθðωÞ ¼ QðθÞσoutðωÞQðθÞT; ð14Þ

where

σoutðωÞ ¼
1

2
ffiffiffiffiffiffi
2π

p SðωÞSTð−ωÞ ð15Þ

is the Fourier transform of the covariance matrix
of the output state σoutðτÞ¼ 1

2
hRoutð0ÞRT

outðτÞþ
ðRoutðτÞRT

outð0ÞÞTi, which depends only on time differences
τ, as we are considering a stationary regime [43]. In
Eq. (15), we used (5) and the fact that for vacuum input
state σinðτÞ ¼ ðI=2ÞδðτÞ.
Equation (15) can be rewritten by making use of the

ABMD in Eq. (9). We obtain

σoutðωÞ ¼
1

2
ffiffiffiffiffiffi
2π

p UðωÞD2ðωÞU†ðωÞ: ð16Þ

By replacing (16) into (14) it is clear that, in general,
optimal squeezing (respectively, antisqueezing) cannot be
reached by any linear combination QðθÞ apart from those
cases in which UðωÞ is real. In this case, optimality could
be reached only at a given value of ω, by choosing QðθÞ
equal to one column of U†ðωÞ, as we will show in the next
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section. In experiments, the supermodes properties, and in
turn their squeezing features, can be obtained by replacing
QðθÞ by a complex line vector-valued function QðθðωÞÞ
equal to the ith column of U†ðωÞ. With this choice,

ΣθðωÞ ¼
1

2
ffiffiffiffiffiffi
2π

p d2i ðωÞ: ð17Þ

Based on this expression, the elements of the diagonal
matrix D2ðωÞ give directly the variances of super-
modes quadratures and they can be interpreted as their
antisqueezing fd1ðωÞ;…; dNðωÞg and squeezing levels
fd−11 ðωÞ;…; d−1N ðωÞg. We note that assigning QðθðωÞÞ
corresponds to designate a particular shape of the local
oscillator (LO) of a homodyne detection scheme. As a
consequence, in order to retrieve the optimal information
on supermodes, the LO itself must depend on ω and be
chosen according to the analyzing frequency. The shaping
of the LO could be implemented, for example, by a passive
interferometer with memory effect.
Single-mode squeezing in detuned optical cavity.—The

case of a single-mode squeezed state generated in a
detuned optical parametric oscillator (OPO) is already
illustrative of the relevance of a continuous-parameter
symplectic approach. In this case, the vector of field
quadratures is R ¼ ðx; yÞT and the matrix M associated
with this system is

M ¼
�

g Δ
−Δ −g

�
; ð18Þ

where g accounts for the parametric gain and Δ is the
detuning from cavity resonance of the squeezed mode.
The system has two singular values d1ðωÞ and d−11 ðωÞ

and, associated with these, two supermodes. As the super-
mode quadratures are found to have real coefficients, we
can write them as R0

out;i ¼ cos½θiðωÞ�xout þ sin½θiðωÞ�yout
with i ¼ 1, 2. The quadrature angles are frequency depen-
dent and verify θ2ðωÞ ¼ θ1ðωÞ þ π=2. At ω ¼ 0, θ1ð0Þ ¼
arctan ½ðg1 þ ffiffiffiffiffiffiffiffiffi

g2g3
p Þ=2Δγ�, where g1 ¼ g2 − Δ2 þ γ2,

g2 ¼ ðg − ΔÞ2 þ γ2, and g3 ¼ ðgþ ΔÞ2 þ γ2. In Fig. 1
(top), we trace d21ðωÞ (solid) and d−21 ðωÞ (dashed), as
functions of the analysis frequency ω and we compare
them to the standard quantum limit (SQL). The figure also
shows (in gray) normalized-to-SQL spectra Σθ of field
quadratures, Zθ ¼ cos θxout þ sin θyout, calculated for sev-
eral values of the angle θ, with θ frequency independent.
These quadratures are obtained by imposing in Eq. (12) a
real and constant QðθÞ. Regardless the choice of θ, the
curves Σθ exhibit a (local or asymptotic) minimum but do
not reach the optimal squeezing for all values of ω.
Conversely, the function d−21 ðωÞ corresponds the envelope
of Σθ minima, thus confirming that the optimal squeezing
spectrum is the one computed for the morphing superm-
odes. A similar observation holds for the antisqueez-
ing d21ðωÞ.

Figure 1 (bottom) shows the angles θ1ðωÞ and θ2ðωÞ that
give the supermode coefficients. The color code indicates
quadrature noise levels normalized to SQL as functions of
ω and of the quadrature angle θ. As expected, when ω
changes, the frequency dependent angles θ1ðωÞ and θ2ðωÞ
associated with supermodes correctly give the superposi-
tions of xout and yout that lead to optimal antisqueezing and
squeezing levels. We note that the dependence of the
optimal quadrature angle with respect to analysis frequency
is in agreement with the result obtained by directly solving
the one-dimension Langevin equations, either in detuned
OPO [23–25] or optomechanical cavities [26,27].
Four-mode system.—To conclude, we discuss a case

that is complex enough to demonstrate the efficacy of
the generalized symplectic approach and the ABMD. We
chose a multimode system withN ¼ 4 in the case of both F
and G non-null. The structure of these two matrices is
chosen as

F ¼
� F̃ 2F̃

2F̃ F̃

�
; G ¼

�
2G̃ G̃

G̃ 2G̃

�
; ð19Þ

FIG. 1. Top: frequency-dependent singular values d21ðωÞ and
d−21 ðωÞ. They quantify the degree of antisqueezing (dashed black)
and squeezing (solid black), respectively. Solid gray curves
represent the normalized-to-SQL spectrum of quantum noise
Σθ of quadratures Zθ for several values of θ, in agreement with the
existing literature on detuned single-mode OPO [23–25]. Bottom:
color density plot represents Σθ with respect to analysis frequency
ω and quadrature angle θ. Dashed and solid black lines represent
the frequency-dependent angles θiðωÞ associated with superm-
odes R0

out;i. They represent the set of points in the space ðω; θÞ for
which Σθ is minimum (squeezing) or maximum (antisqueezing).
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with F̃ ¼
�
0 a
a 0

�
and G̃ ¼

� b 0

0 b

�
. This scenario is, for

instance, the one of a χð3Þ process driven by two strong
pumps that give origin to both parametric and frequency
conversions, including self- and cross-phase-modulation of
signal and idler waves. For this system, the ABMD gives
eight singular values and eight supermodes that are smooth
with respect to ω. In Fig. 2 (top), we trace the frequency-
dependent singular values that, for this specific case, are
two by two degenerate. The solid lines represent the square
of diðωÞ [respectively, d−1i ðωÞ] for i ¼ 1;…; 4 and they are
compared to SQL. They correctly provide the minimum
(respectively, maximum) degree of squeezing (respectively,
antisqueezing) produced by the system at a given value of
the analysis frequency ω. In Fig. 2 (bottom), we represent
the eight frequency-dependent coefficients of one of the
supermodes (i ¼ 3).
Conclusions.—In this Letter, we illustrated that morph-

ing supermodes naturally emerge from the dynamics of
multimode systems in the most general case of quadratic
Hamiltonians without a priori hypotheses. In order to fully
characterize their dynamical and quantum properties, we
developed a universal symplectic approach. The presented
strategy allows for covering the analysis of many optical
systems that are relevant for quantum technologies but that
cannot be easily analyzed by standard symplectic diago-
nalizations. We introduced the analytical Bloch-Messiah
decomposition that allows treating symplectic transforma-
tions that depend on a continuous parameter, such as the

frequency ω. As a result of the decomposition, supermodes
and their associated singular values are, in the most general
case, dependent on the continuous parameter. Our approach
will allow treating easily systems with a very large number
of degrees of freedom, hence enabling a better harvesting
and control of their quantum properties. This feature is of
crucial importance for application in the domain of quan-
tum technologies with a major impact in the development
of bulk and integrated quantum optics.
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sité Côte d’Azur UCA-JEDI project (under the label
Quantum@UCA) managed by the ANR (Grant No. ANR-
15-IDEX-01).

*giuseppe.patera@univ-lille.fr
[1] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,

T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[2] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States
in Quantum Information, Napoli Series on Physics and
Astrophysics, No. 8 (Bibliopolis, Naples, 2005).

[3] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-
enhanced measurements: Beating the standard quantum
limit, Science 306, 1330 (2004).

[4] S. L. Braunstein and P. van Loock, Quantum information
with continuous variables, Rev. Mod. Phys. 77, 513 (2005).

[5] J. Zhang and S. L. Braunstein, Continuous-variable Gaus-
sian analog of cluster states, Phys. Rev. A 73, 032318
(2006).

[6] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.
Ralph, and M. A. Nielsen, Universal Quantum Computation
with Continuous-Variable Cluster States, Phys. Rev. Lett.
97, 110501 (2006).

[7] J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong,
Y. Shiozawa, K. Makino, and A. Furusawa, Generation of
one-million-mode continuous-variable cluster state by un-
limited time-domain multiplexing, APL Photonics 1, 060801
(2016).

[8] W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C.
Radzewicz, Pulsed squeezed light: Simultaneous squeezing
of multiple modes, Phys. Rev. A 73, 063819 (2006).

[9] G. J. de Valcárcel, G. Patera, N. Treps, and C. Fabre,
Multimode squeezing of frequency combs, Phys. Rev. A
74, 061801(R) (2006).

[10] G. Patera, N. Treps, C. Fabre, and G. J. De Valcárcel,
Quantum theory of Synchronously Pumped type I Optical
Parametric Oscillators: Characterization of the squeezed
supermodes, Eur. Phys. J. D 56, 123 (2010).

FIG. 2. Top: frequency-dependent singular values diðωÞ and
d−2i ðωÞ, for i ¼ 1;…; 4, quantifying the degree of antisqueezing
(dashed) and squeezing (solid) of corresponding supermode.
Level of noise equal to one corresponds to SQL. Bottom:
frequency-dependent (real) coefficients U3;jðωÞ of one (i ¼ 3)
of the eight supermodes obtained from ABMD.

PHYSICAL REVIEW LETTERS 125, 103601 (2020)

103601-5

https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevA.73.032318
https://doi.org/10.1103/PhysRevA.73.032318
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1063/1.4962732
https://doi.org/10.1063/1.4962732
https://doi.org/10.1103/PhysRevA.73.063819
https://doi.org/10.1103/PhysRevA.74.061801
https://doi.org/10.1103/PhysRevA.74.061801
https://doi.org/10.1140/epjd/e2009-00299-9


[11] S. L. Braunstein, Squeezing as an irreducible resource,
Phys. Rev. A 71, 055801 (2005).

[12] R. S. Bennink and R.W. Boyd, Improved measurement of
multimode squeezed light via an eigenmode approach,
Phys. Rev. A 66, 053815 (2002).

[13] N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister,
Ultracompact generation of continuous-variable cluster
states, Phys. Rev. A 76, 010302(R) (2007).

[14] G. Patera, C. Navarrete-Benlloch, G. J. de Valcárcel, and C.
Fabre, Quantum coherent control of highly multipartite
continuous-variable entangled states by tailoring parametric
interactions, Eur. Phys. J. D 66, 241 (2012).

[15] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N.
Treps, Wavelength-multiplexed quantum networks with
ultrafast frequency combs, Nat. Photonics 8, 109 (2014).

[16] D. Barral, M. Walschaers, K. Bencheikh, V. Parigi, J. A.
Levenson, N. Treps, and N. Belabas, A versatile photonic
entanglement synthesizer in the spatial domain,
arXiv:1912.11154.

[17] G. Ferrini, J. Roslund, F. Arzani, Y. Cai, C. Fabre, and N.
Treps, Optimization of networks for measurement-based
quantum computation, Phys. Rev. A 91, 032314 (2015).

[18] J. Nokkala, F. Arzani, F. Galve, R. Zambrini, S. Maniscalco,
J. Piilo, N. Treps, and V. Parigi, Reconfigurable optical
implementation of quantum complex networks, New J.
Phys. 20, 053024 (2018).

[19] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B.
Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss,
L. Caspani, J. Azaña, and R. Morandotti, On-chip generation
of high-dimensional entangled quantum states and their
coherent control, Nature (London) 546, 622 (2017).

[20] L. Helt and N. Quesada, Degenerate squeezing in wave-
guides: A unified theoretical approach, J. Phys. Photonics 2,
035001 (2020).

[21] A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, Theory
of quantum frequency conversion and type-{II} parametric
down-conversion in the high-gain regime, New J. Phys. 15,
053038 (2013).

[22] T. Lipfert, D. B. Horoshko, G. Patera, and M. I. Kolobov,
Bloch-Messiah decomposition and Magnus expansion for
parametric down-conversion with monochromatic pump,
Phys. Rev. A 98, 013815 (2018).

[23] C. Fabre, É. Giacobino, A. Heidmann, and S. Reynaud,
Noise characteristics of a non-degenerate Optical Parametric
Oscillator - Application to quantum noise reduction, J. Phys.
50, 1209 (1989).

[24] C. Fabre, É. Giacobino, A. Heidmann, L. Lugiato, S.
Reynaud, M. Vadacchino, and W. Kaige, Squeezing in
detuned degenerate optical parametric oscillators, Quantum
Opt. 2, 159 (1990).

[25] A. Porzio, C. Altucci, P. Aniello, C. de Lisio, and S.
Solimeno, Resonances and spectral properties of detuned
{OPOs} pumped by fluctuating sources, Appl. Phys. B 75,
655 (2002).

[26] C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, É. Giaco-
bino, and S. Reynaud, Quantum-noise reduction using a
cavity with a movable mirror, Phys. Rev. A 49, 1337 (1994).

[27] S. Mancini and P. Tombesi, Quantum noise reduction by
radiation pressure, Phys. Rev. A 49, 4055 (1994).

[28] Z. Vernon, N. Quesada, M. Liscidini, B. Morrison, M.
Menotti, K. C. Tan, and J. E. Sipe, Scalable Squeezed-Light
Source for Continuous-Variable Quantum Sampling,
Phys. Rev. Applied 12, 064024 (2019).

[29] P.-G. De Gennes, Superconductivity of Metals and Alloys,
1st ed. (CRC Press, Boca Raton, FL, 2018).

[30] I. Bloch, J. Dalibard, and W. Zwerger, Many-body
physics with ultracold gases, Rev. Mod. Phys. 80, 885
(2008).

[31] We are using the following notation: ½·�T for the transpose,
½·�� for the complex conjugate, and ½·�† for the Hermitian
transpose.

[32] Y. K. Chembo, Quantum dynamics of Kerr optical fre-
quency combs below and above threshold: Spontaneous
four-wave mixing, entanglement, and squeezed states of
light, Phys. Rev. A 93, 033820 (2016).

[33] C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed.,
Springer Series in Synergetics (Springer, New York,
2004).

[34] The problem can be greatly simplified in some special cases
for which M could be block diagonalized or put into a
canonical Jordan form via symplectic and unitary matrices.

[35] V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi,
D. H. Mahler, M. J. Collins, K. Y. Tan, J. Lavoie, A.
Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E.
Lita, T. Gerrits, S. W. Nam, and Z. Vernon, Broadband
quadrature-squeezed vacuum and nonclassical photon num-
ber correlations from a nanophotonic device, arXiv:
1904.07833.

[36] S. Jiang, N. Treps, and C. Fabre, A time/frequency quantum
analysis of the light generated by synchronously pumped
optical parametric oscillators, New J. Phys. 14, 043006
(2012).

[37] Arvind, B. Dutta, N. Mukunda, and R. Simon, The real
symplectic groups in quantum mechanics and optics,
Pramana 45, 471 (1995).

[38] G. Adesso, S. Ragy, and A. R. Lee, Continuous variable
quantum information: gaussian states and beyond, Open
Syst. Inf. Dyn. 21, 1440001 (2014).

[39] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.103601 for the
proof of the ω simplecticity of SðωÞ (first section), a
discussion about connections with Bogoliubov canonical
transformations (second section) and the proof of the
existence of the analytical Bloch-Messiah decomposition
for an ω symplectic transformation (third section).

[40] D. S. Mackey, N. Mackey, and F. Tisseur, Structured tools
for structured matrices, Electron. J. Linear Algebra 10, 106
(2003).

[41] N. N. Bogoliubov, On the theory of superfluidity, J. Phys.
11, 23 (1947).

[42] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite
Systems (MIT Press, Cambridge, MA, 1986).

[43] M. I. Kolobov and G. Patera, Spatiotemporal multipartite
entanglement, Phys. Rev. A 83, 050302(R) (2011).

PHYSICAL REVIEW LETTERS 125, 103601 (2020)

103601-6

https://doi.org/10.1103/PhysRevA.71.055801
https://doi.org/10.1103/PhysRevA.66.053815
https://doi.org/10.1103/PhysRevA.76.010302
https://doi.org/10.1140/epjd/e2012-30036-2
https://doi.org/10.1038/nphoton.2013.340
https://arXiv.org/abs/1912.11154
https://doi.org/10.1103/PhysRevA.91.032314
https://doi.org/10.1088/1367-2630/aabc77
https://doi.org/10.1088/1367-2630/aabc77
https://doi.org/10.1038/nature22986
https://doi.org/10.1088/2515-7647/ab87fc
https://doi.org/10.1088/2515-7647/ab87fc
https://doi.org/10.1088/1367-2630/15/5/053038
https://doi.org/10.1088/1367-2630/15/5/053038
https://doi.org/10.1103/PhysRevA.98.013815
https://doi.org/10.1051/jphys:0198900500100120900
https://doi.org/10.1051/jphys:0198900500100120900
https://doi.org/10.1088/0954-8998/2/2/006
https://doi.org/10.1088/0954-8998/2/2/006
https://doi.org/10.1007/s00340-002-1012-7
https://doi.org/10.1007/s00340-002-1012-7
https://doi.org/10.1103/PhysRevA.49.1337
https://doi.org/10.1103/PhysRevA.49.4055
https://doi.org/10.1103/PhysRevApplied.12.064024
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevA.93.033820
https://arXiv.org/abs/1904.07833
https://arXiv.org/abs/1904.07833
https://doi.org/10.1088/1367-2630/14/4/043006
https://doi.org/10.1088/1367-2630/14/4/043006
https://doi.org/10.1007/BF02848172
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1142/S1230161214400010
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.103601
https://doi.org/10.13001/1081-3810.1101
https://doi.org/10.13001/1081-3810.1101
https://doi.org/10.1103/PhysRevA.83.050302

