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Ab initio nuclear theory provides not only a microscopic framework for quantitative description of the
nuclear many-body system, but also a foundation for deeper understanding of emergent collective
correlations. A symplectic Spð3;RÞ ⊃ Uð3Þ dynamical symmetry is identified in ab initio predictions, from
a no-core configuration interaction approach, and found to provide a qualitative understanding of the
spectrum of 7Be. Low-lying states form an Elliott SU(3) spectrum, while an Spð3;RÞ excitation gives rise to
an excited rotational band with strong quadrupole connections to the ground state band.
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The nucleus is a complex many-body system, which
nonetheless exhibits simple patterns indicative of emergent
collective degrees of freedom [1–4]. Ab initio nuclear theory
now provides accurate quantitative predictions for observ-
ables in light nuclei [5–14]. Signatures of collective phenom-
ena including clustering [14–19] and rotation [12,20–23]
emerge from ab initio calculations. This leaves us with the
question of understanding the underlying physical nature of
the collective correlations giving rise to these patterns.
In a system exhibiting dynamical symmetry [24–28],

simple patterns arise naturally, since the spectrum of
eigenstates is organized according to irreducible represen-
tations (irreps) of the dynamical symmetry group. In heavier
nuclei, dynamical symmetries have played a central role in
characterizing nuclear correlations and collective phenom-
ena [29,30]. In intermediate-mass nuclei, described by the
shell model, Elliott’s SU(3) dynamical symmetry [31–33]
provides a mechanism for the emergence of rotation. In the
lightest nuclei, accessible by ab initio theory, we may now
seek to identify the role of Spð3;RÞ ⊃ Uð3Þ dynamical
symmetry [34–36] in defining the structure of the excitation
spectrum.
The symplectic group Spð3;RÞ, associated with the

coordinates and momenta in three dimensions, has long
beenproposed as an organizing scheme for the nuclearmany-
body problem [34–37]. Through its U(3) subgroup, the
symmetry group of the harmonic oscillator, it is intimately
connected to the nuclear shell model [34,35,38–44]. In its
contraction limit, Spð3;RÞ yields a microscopic formulation
of nuclear collective dynamics, in terms of coupled rotational
and giant monopole and quadrupole vibrational degrees of
freedom [45,46].
Wave functions obtained in ab initio calculations have

already been identified as having specific dominant U(3)

and Spð3;RÞ symmetry components [9,47–54]. In this
Letter, calculations carried out in a symplectic no-core
configuration interaction (SpNCCI) framework demon-
strate that the symmetry of individual states moreover fits
into an overall Spð3;RÞ ⊃ Uð3Þ dynamical symmetry
pattern of the spectrum as a whole.
In particular, for 7Be, beyond the well-known K ¼ 1=2

ground state rotational band [20–22], we find that an
excited band emerges in the ab initio calculations as a
symplectic collective excitation. The remainder of the low-
lying spectrum follows an Elliott SU(3) dynamical sym-
metry pattern, where the rotational structure is, however,
dressed by multishell symplectic excitations. Preliminary
results were presented in Refs. [55,56].
Spð3;RÞ ⊃ Uð3Þ dynamical symmetry.—To recognize

the role of Spð3;RÞ ⊃ Uð3Þdynamical symmetry inab initio
calculated spectra, we must first be familiar with some
basic properties of Spð3;RÞ irreps. Elliott’s Uð3Þ ¼ Uð1Þ ×
SUð3Þ group considered here is the product of an SU(3)
generated by the orbital angular momentum operator and a
quadrupole tensor Q, and the U(1) group of the harmonic
oscillator Hamiltonian. Then Spð3;RÞ augments these
generators with symplectic raising and lowering operators,
which physically represent creation and annihilation oper-
ators for giant monopole and quadrupole vibrations.
An Spð3;RÞ irrep is comprised of an infinite tower of

U(3) irreps. Starting from a single U(3) irrep with some
lowest number of oscillator quanta, or lowest grade irrep
(LGI), the remaining U(3) irreps are obtained by repeatedly
acting with the symplectic raising operator, which adds two
oscillator quanta at a time. Each U(3) irrep is characterized
by a fixed number of oscillator quanta and by SU(3)
quantum numbers ðλ; μÞ, which are related to the nuclear
deformation [57]. A U(3) irrep may therefore be labeled by
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quantum numbers ω≡ Nω;exðλω; μωÞ, where Nex denotes
the number of oscillator excitations relative to the lowest
Pauli-allowed oscillator configuration. The entire Spð3;RÞ
irrep is then uniquely labeled by the U(3) quantum numbers
σ ≡ Nσ;exðλσ; μσÞ of its LGI. The 2ℏω and 4ℏω U(3) irreps
arising through the action of the symplectic raising operator
on the σ ¼ 0ð3; 0Þ LGI in 7Be are illustrated in Fig. 1(b).
The full subgroup chain, taking into account angular

momenta, is

½ Spð3;RÞ
σ

Nσ;exðλσ;μσÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

⊃ Uð3Þ
ω

Nω;exðλω;μωÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

⊃SOð3Þ
L

�×SUSð2Þ
S

⊃SUJð2Þ
J

:

ð1Þ

Each U(3) irrep contains states of orbital angular momenta
L according to the SUð3Þ ⊃ SOð3Þ branching rule [31].
Fermionic antisymmetry defines the possible total spins S
[32,59,60] for each U(3) irrep realized in the nuclear many-
body system. Then L and S combine to give total angular
momenta J, as illustrated in Fig. 1(c) for the ω ¼ 0ð3; 0Þ
irrep in 7Be, where L ¼ 1, 3 combine with S ¼ 1=2 to give
J ¼ 1=2; 3=2; 5=2; 7=2.
The low-energy spectrum expected in a dynamical

symmetry description of 7Be is illustrated in Fig. 1(a). In
the 0ℏω (or valence) space, the U(3) irreps which arise have
ω ¼ 0ð3; 0Þ, 0(1,1) and 0(0,0), appearing in combination
with specific spins S as shown in Fig. 1(a). Each serves as
the LGI of an Spð3;RÞ irrep (with Nσ;ex ¼ 0). The U(3)

irrep with ωS ¼ 2ð5; 0Þ1=2 obtained by symplectic ladder-
ing from the σS ¼ 0ð3; 0Þ1=2 LGI is shown. Then, further
Spð3;RÞ irreps originate at higher Nσ;ex.
The energy spectrum in Fig. 1 is determined by a simple

dynamical symmetry Hamiltonian constructed from the
Casimir operators for the subgroup chain (1):

H ¼ αCSpð3;RÞ þ εH0 þ βCSUð3Þ þ aLL2 þ aSS2 þ ξL · S:

ð2Þ

Here,CSpð3;RÞ is the Casimir operator of Spð3;RÞ [44], while
the SU(3) Casimir operator CSUð3Þ ¼ ð1=6ÞðQ ·Qþ 3L2Þ
incorporates the classic Elliott quadrupole Hamiltonian [32].
The J2 angular momentum Casimir operator is absorbed
into L · S ¼ 1

2
ðJ2 −L2 − S2Þ.

AK ¼ 1=2 ground-state band is experimentally observed
in 7Be (and mirror nuclide 7Li) [58,61], with an exaggerated
Coriolis energy staggering leading to an inverted angular
momentum sequence (J ¼ 3=2; 1=2; 7=2; 5=2). When the
usual attractive sign is taken on the quadrupole interaction
in Eq. (2), i.e., β < 0, the leading (lowest energy) U(3) irrep
is 0(3,0), which indeed has the same angular momentum
content [Fig. 1(c)] as the 7Be ground-state band. The
staggering is qualitatively reproduced via theL · S depend-
ence in Eq. (2).
Dynamical symmetry provides concrete predictions also

for transition strengths [27,28]. The isoscalar part of the
quadrupole operator is a linear combination of Spð3;RÞ

(a)

(b)

(c)

(d)

FIG. 1. Low-lying spectrum in an Spð3;RÞ ⊃ Uð3Þ dynamical symmetry description of 7Be. (a) Energies. Parameters in the dynamical
symmetry Hamiltonian (2) are chosen for approximate consistency with the experimental [58] and ab initio calculated spectra of 7Be.
States are grouped by U(3) irreps (labeled by ωS). The excited ωS ¼ 2ð5; 0Þ1=2U(3) irrep obtained by symplectic raising (arrow) within
the σS ¼ 0ð3; 0Þ1=2 Spð3;RÞ irrep is shown. To facilitate comparison with Fig. 2, Spð3;RÞ irreps are tagged by symbols defined there
for σS. (b) Organization of Spð3;RÞ irrep σ ¼ 0ð3; 0Þ into U(3) irreps (dots), connected by the symplectic raising operator (lines).
Shown through Nex ¼ 4. (c) Branching of the U(3) irrep 0(3,0) to orbital angular momenta L, followed by coupling with spin (S ¼ 1=2)
to give total angular momenta J. (d) Quadrupole transition strengths (isoscalar), within the σS ¼ 0ð3; 0Þ1=2 Spð3;RÞ irrep, with BðE2Þ
strength indicated by line thickness (and shading).

PHYSICAL REVIEW LETTERS 125, 102505 (2020)

102505-2



generators. Thus, Spð3;RÞ ⊃ Uð3Þ dynamical symmetry
implies strong E2 transitions between U(3) irreps differing
by two quanta within an Spð3;RÞ irrep. Predictions for
isoscalar E2 strengths follow directly from Spð3;RÞ gen-
erator matrix elements [62,63], with no free parameters, as
illustrated in Fig. 1(d) for σS ¼ 0ð3; 0Þ1=2.
Ab initio SpNCCI results for 7Be.—The present SpNCCI

framework for ab initio calculations makes use of a
symmetry-adapted basis for the fermionic many-body
space, one which reduces the subgroup chain (1) and is
free of center-of-mass excitations. Matrix elements of the
Hamiltonian and other operators are obtained recursively in
terms of matrix elements between the LGIs, building on the
ideas of Reske, Suzuki, and Hecht [64–66]. These seed
matrix elements are calculated using the U(3)-coupled
symmetry-adapted no-core shell model (SA-NCSM)
[9,52]. Details may be found in Ref. [56].
Here we carry out SpNCCI calculations for 7Be with the

Daejeon16 internucleon interaction [67], in a basis incor-
porating all Spð3;RÞ irreps with LGIs with up to 6 quanta
(Nσ;ex ≤ 6), and carrying each of these up to 6 quanta
(Nω;ex ≤ 6), both taken relative to the lowest Pauli-allowed
configuration. The resulting space is simply the center-of-
mass free subspace [68,69] of the Nmax ¼ 6 no-core shell
model (NCSM) space [70], and the spectroscopic results,
shown in Fig. 2(a), are identical to those of a traditional
Nmax ¼ 6 calculation.

Although symmetry-adapted bases combined with physi-
cally motivated truncation schemes can yield improved
convergence of calculations [49,52], our interest here lies
in understanding how the dynamical symmetry structure of
7Be underlies the features of theab initio calculated spectrum.
Since the basis reduces the subgroup chain (1), SpNCCI
calculations provide immediate access to the Spð3;RÞ and
U(3) symmetry decompositions of the calculated wave
functions, as illustrated in Fig. 3. Further decompositions
are provided in the Supplemental Material [72].
Notably, rotational features emerge in the spectrum. A

K ¼ 1=2 ground state band (J ¼ 1=2 through 7=2) is
readily recognized through enhanced E2 transitions in
the ab initio calculated spectrum [Fig. 2(a), lower dashed
line], as in earlier NCSM calculations [20–22]. Calculated
excitation energies within the band are already largely
insensitive to Nmax even though absolute energies are not
well converged (see Ref. [73]).
Moreover, two higher angular momentum states (9=2−2

and 11=2−1 ) have strong E2 connections to this ground state
band. In previous NCSM calculations [20–22], these states
have been considered as possible ground state band
members, albeit with energies above those expected from
the standard rotational energy formula with Coriolis stag-
gering [Fig. 2(a), lower dotted line]. Their quadrupole
moments are also anomalously large compared to the
ground state band members (Fig. 5 of Ref. [21]).

(a) (b)

FIG. 2. Ab initio calculated negative parity energy spectrum of 7Be: (a) Rotational bands (red squares). Strengths (line thickness and
shading) are indicated for all J-decreasing E2 transitions from rotational band members (specifically, Jf < Ji or Jf ¼ Ji and Ef < Ei).
Energies are plotted against angular momentum scaled as JðJ þ 1Þ, as appropriate for rotational analysis. Fits to the rotational energy
formula with Coriolis staggering are shown (dashed or dotted lines). (b) Most significant Spð3;RÞ contribution σS (indicated by symbol
shape and color, see legend) for each state. States with the same largest U(3) contribution ωS are connected by dashed lines. Close-lying
states may represent degenerate subspaces involving different internal spin couplings (square brackets, with a numeral 2 indicating
degenerate doublets indistinguishable in the plot) or may undergo significant two-state mixing (angled brackets). Experimental energies
[58] are shown for context (horizontal lines). Calculation is for the Daejeon16 interaction, with Nmax ¼ 6 and oscillator basis parameter
ℏω ¼ 15 MeV [71].

PHYSICAL REVIEW LETTERS 125, 102505 (2020)

102505-3



However, these 9=2− and 11=2− states also have enhanced
transitions to a particular high-lying 5=2− state and 7=2−

state, well off the yrast line. Tracing E2 strengths to lower J
reveals that these 5=2− and 7=2− states belong to an excited
K ¼ 1=2 rotational band [Fig. 2(a), upper dashed line]. One
might therefore suspect the 9=2− and 11=2− states belong to
the excited rotational band, albeit with energies below those
expected for this band [Fig. 2(a), upper dotted line].
Returning to the Spð3;RÞ ⊃ Uð3Þ decompositions of

Fig. 3 for insight, the wave functions of the ground state
band members are dominated by a single U(3) irrep,
namely, ωS ¼ 0ð3; 0Þ1=2, as expected (above) from a
dynamical symmetry picture. About 60–70% of the prob-
ability (or norm) of these states comes from this U(3) irrep,
as illustrated for the ground state [Fig. 3(e)], with the
exception of the 5=2− band member, which lies in a close
doublet and undergoes two-state mixing.
This 0ℏω Elliott U(3) description of the ground state

band is dressed by 2ℏω and higher excitations. We see that
excitations within the same Spð3;RÞ irrep account for
much of the remaining probability. For the ground state
[Fig. 3(f)], the σS ¼ 0ð3; 0Þ1=2 Spð3;RÞ irrep accounts for
over 80% of the probability, which comes from, e.g., the
ωS ¼ 2ð5; 0Þ1=2 and 2ð1; 2Þ1=2 irreps within this Spð3;RÞ
irrep [recall Fig. 1(b)].
For the excited band, the largest U(3) contribution comes

from ωS ¼ 2ð5; 0Þ1=2, e.g., ∼40% for the 7=2− band
member [Fig. 3(c)]. This again suggests an Elliott rotational
description, but now in the 2ℏω space rather than in the
traditional 0ℏω shell model valence space. The U(3)
symmetry is more diluted than for the ground state band,
and dressing with higher excitations is again significant.
Moreover, we see that the excited band members lie

almost entirely within the same σS ¼ 0ð3; 0Þ1=2 Spð3;RÞ

irrep as the ground state band, e.g., ∼70% for the 7=2−

band member [Fig. 3(d)]. While there are 8 different U(3)
irreps with quantum numbers ωS ¼ 2ð5; 0Þ1=2 for 7Be, the
2ð5; 0Þ1=2 probability found in the calculated wave func-
tion arises almost entirely from the one such U(3) irrep
lying in the σS ¼ 0ð3; 0Þ1=2 symplectic irrep.
Thus, the wave functions are consistent with an approxi-

mate Spð3;RÞ ⊃ Uð3Þ dynamical symmetry (Fig. 1).
Indeed, the Spð3;RÞ symmetry is significantly better
preserved than the U(3) symmetry.
Turning to the 9=2− and 11=2− states with strong

transitions to both bands, these have predominantly ωS ¼
2ð5; 0Þ1=2 U(3) content [Fig. 3(a)], like the excited band
members but purer (∼50%–60%). They likewise lie almost
entirely within the ground state’s σS ¼ 0ð3; 0Þ1=2 Spð3;RÞ
irrep [Fig. 3(b)].
Thus, Spð3;RÞ ⊃ Uð3Þ dynamical symmetry provides a

context for understanding both the emergent rotational
features and the incomplete description provided for
these features by a simple adiabatic rotational picture.
Qualitatively, a 0ℏω ground state band [ωS ¼ 0ð3; 0Þ1=2]
and 2ℏω excited band [ωS ¼ 2ð5; 0Þ1=2] liewithin the same
symplectic irrep [σS ¼ 0ð3; 0Þ1=2]. In a pure Elliott U(3)
rotational description, the 9=2− and 11=2− states would
simply be part of the excited band. Enhanced transitions
among these states are a consequence of dynamical sym-
metry [Fig. 1(d)], reflecting the role of the isoscalar E2
operator as a generator connecting states with ΔN ¼ �2
within an Spð3;RÞ irrep.
Yet, mixing of U(3) irreps within the Spð3;RÞ irrep,

which becomes significant for the off-yrast excited band
members (J ≤ 7=2), manifests in deviations from a pure
Elliott rotational picture. This breakdown is reflected in
weaker in-band and interband E2 transitions involving the
low-J excited band members [Fig. 2(a)], compared to
the dynamical symmetry predictions [Fig. 1(d)], as well
as the discontinuity in energies between the low-J and
high-J members of this band.
For the remaining low-lying states in Fig. 2(a), the

overall pattern of the spectrum is again qualitatively
described by Spð3;RÞ ⊃ Uð3Þ dynamical symmetry. In
Fig. 2(b), the symbols identify the largest Spð3;RÞ com-
ponent, while dashed lines (where practical) connect states
sharing the same largest U(3) component.
For many of the states near the yrast line the largest U(3)

and Spð3;RÞ components contribute the preponderance
of the probability. However, as we move to higher energy
and away from the yrast line, contributions from other
U(3) and Spð3;RÞ components become increasingly
important (see Supplemental Material [72]). Furthermore,
recall that, when two states are nearly degenerate in
energy, they may undergo two-state mixing [brackets in
Fig. 2(b)]. This serves both to mix the dynamical symmetry
content and lift the energy degeneracy through level
repulsion [3,74].

(a)

(c)

(e) (f)

(b)

(d)

FIG. 3. Decompositions of calculated 7Be wave functions by
U(3) (left) and Spð3;RÞ (right) contributions, for the ωS ¼
0ð3; 0Þ1=2 ground state band member 3=2−1 (bottom), the ωS ¼
2ð5; 0Þ1=2 excited band member 7=2−3 (middle), and the strongly
connected 11=2−1 (top). Contributions are arranged by Nexðλ; μÞS
and shown through Nex ¼ 2.
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The dynamical symmetry picture accounts for the full set
of states in the calculated low-lying (0ℏω) spectrum and the
overall pattern of their energies. In comparing Fig. 1(a)
with Fig. 2(b), it is helpful to focus on the “constellations”
formed when the calculated states are classified by their
predominant Spð3;RÞ ⊃ Uð3Þ contributions. For instance,
the calculated states [Fig. 2(b)] with largest component
ωS ¼ 0ð1; 1Þ3=2 form a roughly trapezoidal constellation
(up triangles), while those with ωS ¼ 0ð1; 1Þ1=2 form two
nearly degenerate diamond-shaped constellations (down
triangles), as in the dynamical symmetry picture [Fig. 1(a)].
Counterparts to the expected higher-lying ωS ¼ 0ð0; 0Þ3=2
(hexagon) and ωS ¼ 0ð0; 0Þ1=2 (circle) are also found.
The relationship between the calculated spectrum and

the dynamical symmetry picture, shown here for the
Daejeon16 interaction, is robust across choice of internu-
cleon interaction. This is illustrated for, e.g., the JISP16
[75] and Entem-Machleidt N3LO chiral perturbation theory
[76] interactions in the Supplemental Material [72].
Conclusion.—We have seen that Spð3;RÞ ⊃ Uð3Þ

dynamical symmetry, as laid out in Fig. 1, provides an
organizing scheme for understanding the entire low-lying
ab initio calculated spectrum of 7Be, as shown in Fig. 2.
Symmetry is reflected not merely in the decompositions of
the individual wave functions (Fig. 3), but in the overall
arrangement of energies, which is remarkably consistent
with a simple dynamical symmetry Hamiltonian (2), and in
the E2 transition patterns among them.
Essential features of the dynamical symmetry structure

are a 0ℏω spectrum well-described in an Elliott U(3)
picture, but dressed by 2ℏω and higher contributions from
within the Spð3;RÞ irrep, and excited states reflecting 2ℏω
excitations within the Spð3;RÞ irrep, related to the lower-
lying states by strong quadrupole transitions. Although the
purity of U(3) symmetry falls off away from the yrast line,
as reflected in the inability of a simple rotational descrip-
tion to simultaneously describe both the low-J members
of the excited band and the strongly connected 9=2− and
11=2− states, the persistence of Spð3;RÞ symmetry
explains the presence of these strong transitions.
The connection between the ground state and excited

bands by the symplectic raising operators, which physically
represent creation operators for the giant monopole and
quadrupole resonances, is suggestive of the emergence of
collective vibrational degrees of freedom. In the light,
weakly bound 7Be system, such an interpretation can at
most be approximate. In the present bound state formalism,
it moreover remains uncertain how the structure of the
calculated excited band relates to the structure of physical
resonances [19].
Nonetheless, the presence of rotational bands with

strong E2 connections may be taken as a possible precursor
to rotational-vibrational structure in heavier and more
strongly bound systems. Indeed, the emergence of
Spð3;RÞ symmetry as an organizing scheme for nuclear

structure in light nuclei provides a link to more purely
collective interpretations of the dynamics through the
rotation-vibration degrees of freedom which naturally arise
in the classical (large quantum number) limit of the
symplectic description [36,45,77–79].
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