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Nuclear fission plays an important role in fundamental and applied science, from astrophysics to nuclear
engineering, yet it remains a major challenge to nuclear theory. Theoretical methods used so far to compute
fission observables rely on symmetry-breaking schemes where basic information on the number of
particles, angular momentum, and parity of the fissioning nucleus is lost. In this Letter, we analyze the
impact of restoring broken symmetries in the benchmark case of 240Pu.
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Introduction.—Nuclear fission, the process of splitting
an atomic nucleus into two or more fragments, is a key
ingredient for modeling nucleosynthesis, as it prevents the
production of superheavy elements and its products (fission
fragments, neutrons, and photons) impact the astrophysical
reaction rates [1–5]. Detailed knowledge of the fission
channels (spontaneous, neutron-induced, etc.) of selected
actinide nuclei is also at the heart of important societal
applications in medicine, energy production, nuclear for-
ensics and safeguards, etc. [6]. In spite of recent advances
in experimental techniques [7,8], measurements are not
always possible and theoretical simulations that model the
entire process leading to the formation and decay of fission
fragments are mandatory.
Despite formidable efforts over the past eighty years, a

fully microscopic description of the fission phenomenon
based on nuclear forces among protons and neutrons and
quantum many-body methods remains a challenge [9,10].
Nuclear density functional theory (DFT) is currently the only
fully quantum-mechanical framework that can be used to
compute fission observables, such as spontaneous fission
half-lives [11] or fission fragment distributions [12–18].
Time-dependent DFT provides a natural framework to
explain the energy sharing among the fragments [19–21],
which is key to predicting their deexcitation.
Following the initial insight of Bohr and Wheeler, most

DFT-based approaches to fission are built upon the
assumption that a small set of collective degrees of freedom
(typically related to the deformation of the nuclear shape)
drives the fission process [10,22,23]. This description is
formalized through the concept of spontaneous symmetry
breaking: the intrinsic nuclear density does not conserve
symmetries of the nuclear Hamiltonian [24,25]. In particu-
lar, the geometrical deformation of a nucleus is manifested
by the breaking of rotational, axial, or reflection symmetry;
nuclear superfluidity [26] by the breaking of particle
number symmetry, etc. The corresponding potential energy
surfaces (PESs) encode the total energy as a function of
order parameters associated with breaking each symmetry.

They can be used to infer important quantities of interest,
from tunneling probabilities for spontaneous fission
half-lives [11], to the determination of initial states for
time-dependent approaches [20,21], or basis states for
quantum configuration mixing with the generator coordi-
nate method (GCM) [27,28]. The most advanced PESs for
fission studies are based on solving the Hartree-Fock-
Bogoliubov (HFB) equation with Skyrme [29,30], Gogny
[31,32], or relativistic [33,34] functionals.
However, such approaches conceal the basic information

on quantum numbers related to each broken symmetry,
such as the particle number, angular momentum, and parity
of a nucleus. Restoring these symmetries is especially
important to model different fission channels. For example,
symmetry-breaking theory is incapable of distinguishing
between the neutron-induced fission of 235U and the
photofission of 236U [35]. In both cases, the compound
nucleus is the same, 236U, but the spin-parity distribution
can be substantially different since 235Uðn; fÞ involves
coupling the 235U ground-state angular momentum J ¼
7=2 with the spin distribution of the neutron beam, while
236Uðγ; fÞ couples the spin 1 of the photon with J ¼ 0 of an
even-even nucleus. Symmetry restoration techniques are
also essential to obtain more realistic estimates of fission
fragment characteristics, as was shown in the simplest case
of particle number restoration [16,36]. Finally, correlation
energies induced by symmetry restoration modify the
overall PES, which could impact fission dynamics.
With the exception of several pioneering works [37–40],

there has been no attempt at examining the impact of
symmetry restoration in the context of fission. In addition
to formal difficulties with symmetry restoration for stan-
dard functionals [25,41], the computational cost of probing
a large number of extremely deformed configurations in
heavy nuclei is prohibitively high, especially when simul-
taneously restoring multiple symmetries. In fact, sym-
metry-breaking PESs can usually only be computed by
employing large harmonic oscillator (HO) bases with many
incomplete shells which are not closed under spatial
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rotations and for which conventional algorithms of rota-
tional symmetry restoration are inapplicable [42].
In this Letter, we implement for the first time the

technique of rotational symmetry restoration in incomplete
bases originally proposed in Ref. [42], and perform the first
symmetry restoration in 240Pu from the ground state to
scission. High-performance computing capabilities enable
us to quantify the effect of particle number, angular
momentum, and parity projections on the underlying
PES and on the fission fragment mass distributions.
Method.—Symmetry-restored DFT is a two-step method.

In the first step, we generated a set of axially symmetric
HFB configurations with the HFBTHO package [43], using
the SkM* parameterization of the Skyrme energy func-
tional [44], a mixed volume-surface contact pairing force
[45], and constraints on the values of the quadrupole (q20)
and octupole (q30) moments. These quantities correspond
to the elongation and the mass asymmetry of a nuclear
shape, respectively, and arguably represent the most perti-
nent collective degrees of freedom for describing the fission
phenomenon. The HFB equations were solved by expand-
ing the solution in a deformed HO basis of Nmax ¼ 31
incomplete shells with the corresponding lowest Nosc ¼
1100 oscillator states included. The oscillator frequency
and the basis deformation parameter were optimized for
each q≡ ðq20; q30Þ configuration separately; more details
on technical aspects of the HFB calculation can be found
in Ref. [30].
In the next step, collective correlations related to the

restoration of symmetries were incorporated by projecting
the HFB configurations onto good values of angular
momenta J, particle numbers ðN; ZÞ, and parity π. The
projected kernels KJπNZ

q play the central role in this
procedure,

KJπNZ
q ¼

Z
β

X
φn;φp

K
β;φn;φp
q ; ð1Þ

where
R
β ≡ðJ þ 1=2Þ R π

0 dβ sin βdJ�00ðβÞ denotes integration
over the rotational angle β with small Wigner matrices

dJ�00ðβÞ as weights, while
P

φn;φp
≡PNφ

ln;lp¼1 e
−iN0φln e−iZ0φlp

denotes Fomenko sums [46] over gauge angles φlτ ¼
lτðπ=NφÞ (lτ ¼ 0;…; Nφ − 1) for neutrons (τ ¼ n) and
protons (τ ¼ p). In our study, the projected kernel actually
corresponds to the expectation value of the operator Ô in
the symmetry-restored state. Therefore, the integrand of
Eq. (1) can be written as

Kx
q ¼ hΦðqÞjÔe−iβĴyeiφnN̂eiφpẐP̂πjΦðqÞi; ð2Þ

where we introduced x≡ fβ;φn;φpg for compactness,

e−iβĴyeiφnN̂eiφpẐ ≡ R̂ is the rotation operator, P̂π is the
parity projection operator, and Ĵy, N̂, and Ẑ correspond to

the y component of the total angular momentum, the
neutron number, and the proton number operators, respec-
tively. The norm overlap kernelN JπNZ

q is obtained by using
Eqs. (1) and (2) with the identity operator, Ô ¼ 1̂, and the
Hamiltonian kernel HJπNZ

q by using them with the nuclear
Hamiltonian Ĥ.
When computing large-scale PESs, it is customary to

improve convergence by truncating and adjusting at each
point q the characteristics of the underlying HO basis.
However, the resulting basis is not closed under spatial
rotations. Formally, given the rotational symmetry trans-
formation T and a single-particle basis defined by the
creation and annihilation operators fc†l ; ckg, the rotated
basis T −1fc†l ; ckgT will contain states that are not present
in the original basis. This prevents us from using conven-
tional symmetry-restoring algorithms, which all assume
closure of the basis under rotations. The elegant solution to
this hurdle was proposed 25 years ago by Robledo [42],
who reformulated the Wick theorem [47,48] to encompass
bases not closed under symmetry transformations. Based
on the formalism of Ref. [42], we can write the rotated
norm overlap as

N x
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detAx

q × detRx
q

; ð3Þ

where

Ax
q ¼ UT

q ðRxTÞ−1U�
q þ VT

qRxV�
q: ð4Þ

Here, Uq and Vq are the Bogoliubov matrices correspond-
ing to the HFB configuration jΦðqÞi, and Rx denotes the
matrix of the rotation operator R̂ in the HO basis [49]. Note
that in the case of a basis closed under rotations
j det Rxj ¼ 1, and the expression Eq. (3) reduces to the
conventional Onishi formula [50]. In the symmetry-
restored DFT framework, the Hamiltonian kernel HJπNZ

q

is a functional of the one-body, transition density ρxq and
pairing tensor κxq. When the basis is not closed under
rotations, these read

ρxq ¼ RxV�
qAx−1

q VT
q ; ð5aÞ

κxq ¼ RxV�
qAx−1

q UT
q ; ð5bÞ

where the mixed-density prescription was used [51]. The
symmetry-restored energy is simply the ratio EJπNZ

q ¼
HJπNZ

q =N JπNZ
q .

Least-energy fission pathway.—Although distinct from
the most probable fission path [52,53], the least-energy
fission pathway provides valuable information about fis-
sion dynamics such as the existence and energies of fission
barrier heights or fission isomers. These pseudodata are
important to predict the stability of superheavy elements or
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evaluate neutron-induced fission cross sections, especially
in regions of the nuclide chart where no experimental data
is available [54,55]. The goal of the present analysis is to
assess the effect of symmetry restoration on such data along
the entire fission pathway. In this regard, it represents an
extension of the early work by Bender and co-workers who
studied the effect of symmetry restoration along the
reflection-symmetric (q30 ¼ 0) pathway and up to moder-
ate deformations only [37].
In the upper panel of Fig. 1 we plot the deformation

energy of 240Pu along the least-energy fission pathway as
calculated in the HFB approximation (turquoise squares).
Ninety-five configurations along the pathway were deter-
mined by constraining quadrupole moments within a range
21 ≤ q20 ≤ 397 (in b) with steps Δq20 ¼ 4 b, while q30
moments were left unconstrained and determined self-
consistently. We then projected these configurations onto
good values of particle numbers (PNP, red triangles) and
onto good values of particle numbers, angular momentum
(J ¼ 0), and parity (PNP & AMP, blue circles). The two
insets in the upper panel of Fig. 1 show the convergence of
the PNP and PNP & AMP procedures with respect to the
number of integration points for the pre-scission configu-
ration, ðq20; q30Þ ¼ ð345.0 b; 42.6 b3=2Þ, where the under-
lying basis is the most incomplete. In order to ensure proper
numerical convergence across all considered configura-
tions, we set Nφ ¼ 9 and 26 ≤ Nβ ≤ 30.
The potential energy curve of 240Pu is characterized by

two minima, the ground state and a fission isomer, and two
fission barriers [56]. The scission point is marked by a
sharp drop in energy, which occurs here at q20 ≈ 345 b.
Table I lists the corresponding energies of these

configurations. Although the HFB energy of the inner
barrier (9.37 MeV) is about 3.3 MeV higher than the
empirical value inferred from fission cross sections [57,58],
this is mostly caused by the omission of triaxial effects in
our calculations [59,60]: including them lowers the height
of the first barrier by about 1.7 MeV [30]. This effect is
amplified by symmetry restoration, which lowers the
barrier by an additional 1.3 MeV, pushing the theoretical
value well within the uncertainty limits of the empirical
value (typically about 1 MeV). The outer barrier is axially
symmetric and reflection asymmetric [30]. Its height is
lowered by as much as 2.3 MeV by the symmetry
restoration, again pushing the theoretical value within
the 1 MeV limit of the empirical value, 5.15 MeV [58].
On the other hand, the HFB energy of the fission isomer is
already in decent agreement with the empirical value of
2.25� 0.20 MeV [61]: symmetry restoration degrades this
agreement. These numbers are consistent with those
reported in Ref. [37].
While previous work in Refs. [37,38] was exclusively

focused on the potential energy curve near the two barriers,
we extend this study all the way to the scission point. Of
particular interest is the pre-scission energy, which is
defined as the energy difference between the outer barrier
and the scission configuration, and which may provide an
important contribution to the excitation energy of fission
fragments. Interestingly, even though the corrections to the
barriers are significant, we find that the total correlation
energy beyond the outer barrier saturates, with the result
that symmetry restoration has a negligible impact on the
value of pre-scission energy.
In many studies of spontaneous fission, the effect of

AMP is simulated by what is known as the rotational
energy correction [10,62]. It was observed in Ref. [63] that
this term is well approximated by ERC ¼ 0.7 × EPY where
EPY ¼ −hJ2i=ð2J PY), hJ2i is the total angular momentum
dispersion, J PY is the Peierls-Yoccoz moment of inertia
[64], and the phenomenological quenching factor 0.7 is
included to account for approximations introduced in
calculating J PY. In panel (a) of Fig. 1 we also show the
curve obtained by adding ERC on top of the calculated
PNP values (PNPþ RC), while the ratio RRC¼ðE0þ

PNP−
EPNPÞ=EPY is shown in the lower panel of Fig. 1. Our
calculations confirm that ERC is an excellent approximation

(a)

(b)

FIG. 1. (a) Least-energy fission pathway in 240Pu calculated in
the HFB approximation (turquoise squares); projected onto good
values of particle numbers (PNP, red triangles); projected onto
good values of particle numbers, angular momentum (J ¼ 0) and
parity (PNP & AMP, blue circles); obtained by adding the
rotational correction ERC on top of the PNP values (PNPþ RC,
empty squares). The insets show the convergence of the PNP and
PNP & AMP for the pre-scission configuration with respect to the
number of gauge angles Nφ and the number of rotational angles
Nβ, respectively. (b) Ratio RRC ¼ ðE0þ

PNP − EPNPÞ=EPY; see text
for details.

TABLE I. Calculated excitation energies of the inner barrier,
fission isomer, and outer barrier configuration, as well as the pre-
scission energy (in MeV) along the HFB least-energy pathway,
obtained with HFB, PNP, and PNP & AMP models.

Configuration HFB PNP PNP & AMP

Inner barrier 9.37 8.78 8.05
Fission isomer 2.67 2.27 1.02
Outer barrier 6.75 6.28 4.58
Pre-scission 11.68 10.88 11.85
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to the exact model at very large deformation and all the way
to the scission point. However, we also observe that for
configurations with q20 ≲ 150 b the quenching factor of
0.7 is not sufficient, leading to differences in energy up to
2.5 MeV. This discrepancy could have a severe impact on
observables that are very sensitive to details of the under-
lying PES, such as the spontaneous fission half-lives [11,31].
2D PES and fission fragment distributions.—While 1D

fission paths can be sufficient to compute observables such
as half-lives and cross sections, quantities such as fission
fragment distributions require probing at least two dimen-
sions in the collective space. Starting from the PES of 240Pu
in the HFB approximation reported in Ref. [30], we thus
selected a total of 1150 configurations within 20MeVof the
ground state energy. They cover a very broad range of
quadrupole and octupole deformations, with 20 ≤ q20 ≤
567 (in b) and 0 ≤ q30 ≤ 70 (in b3=2). We then projected
each of these configurations onto good values of particle
numbers, angular momentum, and parity using the above
method [65].
Figure 2 shows the PES for the Jπ ¼ 0þ (a) and Jπ ¼ 1−

(b) states with the exact number of particles N ¼ 146 and
Z ¼ 94. Although projection on 1− is not possible for
q30 ¼ 0 b3=2 configurations (indicated by a white line on
the surface), we emphasize that the energy remains well
defined and finite in the q30 → 0 limit [66]. Overall, the
PES retains its main features such as the fission isomer and
the main fission valley, which extends from ðq20; q30Þ ≈
ð90 b; 0 b3=2Þ to ðq20; q30Þ ≈ ð340 b; 40 b3=2Þ. Panels (c)

and (d), which show the energy difference between the
symmetry-restored and HFB surfaces, provide an addi-
tional insight. In particular, for the 0þ state, a pronounced
gain in energy is observed at low q30 values for a wide
range of configurations, pointing to the possible enhance-
ment of symmetric fission. For the 1− state, the correlation
energy is large along and around the least-energy pathway,
suggesting broader fission fragment distributions.
To estimate the actual effect on fission fragment dis-

tributions [65], we used the FELIX solver [67] to solve the
collective Schrödinger equation originating from the
Gaussian overlap approximation of the time-dependent
GCM. The inputs to FELIX were the PESs (HFB and
PNP & AMP for the 0þ and 1− states), the GCM inertia
tensor computed at the perturbative cranking approxima-
tion, and scission configurations defined by the HFB
expectation value of the Gaussian neck operator qN ¼ 5
with a folding factor of width σA ¼ 5; see Ref. [13] for a
discussion. To simulate the neutron-induced fission for
thermal neutrons, the energy of the initial state was set at
1 MeV above the inner barrier. Figure 3 demonstrates the
impact on the fragment mass distributions: fission becomes
more symmetric after projections, and the symmetric
fission mode is indeed enhanced for the 0þ state.
Furthermore, the distribution for the 1− state is significantly
broadened and favors less asymmetric fragmentations.
Note that yields stemming from q30 ¼ 0 b3=2 and nearby
configurations are cautiously excluded from the plot
(indicated by a gap in the curve). These results represent
the first attempt to quantify the effect of symmetry
restoration on actual fission observables. A fully consistent
determination of fission fragment distributions will require
developing a projected theory of collective inertia, estimat-
ing the spin distribution of the fissioning nucleus, and
generating PESs with a much higher resolution in
ðq20; q30Þ.

(a) (b)

(c) (d)

FIG. 2. (a) Two-dimensional symmetry-restored PES of 240Pu
in the ðq20; q30Þ plane for the Jπ ¼ 0þ configuration. (b) Same for
Jπ ¼ 1−. Both surfaces are normalized with respect to the energy
of their respective ground states. (c) Difference between the
symmetry-restored and the HFB surface for the Jπ ¼ 0þ con-
figuration. (d) Same for the Jπ ¼ 1−.

FIG. 3. Primary fission fragment mass distributions in 240Pu
obtained from FELIX with the PES at the HFB level (blue squares)
or after PNP & AMP for the 0þ (orange circles) or 1− (green
triangles) states.
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Conclusion.—Restoring broken symmetries is a neces-
sary step for nuclear models to describe different fission
channels. In this work, we reported the first symmetry-
restoring description of fission from the ground state to
scission. Our analysis of the benchmark case of 240Pu
indicates that projection correlation energies cannot be
approximated by a phenomenological formula across the
entire range of deformations relevant for fission, and that
symmetry restoration may have a substantial impact on the
mass distribution of fission fragments. These conclusions
should be validated by developing a projected theory of
collective inertia. The technique of symmetry restoration in
incomplete bases is extendable to configuration mixing
schemes, and could therefore be key to providing a reliable
and computationally feasible framework for nuclear struc-
ture studies relevant to ongoing experimental programs at
radioactive beam facilities.
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