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We study the thermodynamic cost associated with the erasure of one bit of information over a finite
amount of time. We present a general framework for minimizing the average work required when full
control of a system’s microstates is possible. In addition to exact numerical results, we find simple bounds
proportional to the variance of the microscopic distribution associated with the state of the bit. In the short-
time limit, we get a closed expression for the minimum average amount of work needed to erase a bit. The
average work associated with the optimal protocol can be up to a factor of 4 smaller relative to protocols
constrained to end in local equilibrium. Assessing prior experimental and numerical results based on
heuristic protocols, we find that our bounds often dissipate an order of magnitude less energy.
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Introduction.—Efficient computation hinges on the
ability to erase a memory at minimal energetic cost. The
minimum amount of work needed to complete this process
is given by the Landauer limit [1] stating that at least
kBT ln 2 of work is needed to erase a one-bit memory. Here,
kB is the Boltzmann constant, and T is the absolute
temperature at which the erasure process takes place.
This work is subsequently released as heat into the
environment. Although Landauer’s result is a cornerstone
in the thermodynamics of information [2] and was the key
to resolving the paradox around Maxwell’s demon [3,4], it
is achieved only for slow, quasistatic bit erasure. But
practical information processing requires fast erasure.
Over the past decade, several experiments have studied

the thermodynamics of slow bit erasure and have shown
that one can indeed saturate the Landauer bound in the
quasistatic limit [5–9]. Those works, along with several
theoretical studies [10–12], have suggested that the mini-
mum amount of work needed to erase a bit over a finite
amount of time is given by the Landauer limit plus a
dissipative correction inversely proportional to the duration
of the protocol. The associated proportionality constant,
however, depends on the dynamics of the system and the
constraints that one puts on the driving protocol. Different
protocols lead to different proportionality constants, raising
the question of how to select the optimal protocol that
minimizes this constant and, hence, the costs of finite-time
bit erasure.
Within the fields of finite-time thermodynamics [13]

and stochastic thermodynamics [14,15], the search for
protocols that minimize the average dissipation of a meso-
scopic thermodynamic system during finite-time transfor-
mations has focused on the optimization of a finite (and
usually small) number of control parameters influencing the
potential landscape of the system [16–21]. For bit erasure,

limiting control to a fixed set of parameters may make it
more costly or even impossible to fully erase a bit [22–24].
An important advance is the work of Aurell et al.

[25,26], which uses full control over the potential landscape
to find protocols valid in both slow and fast limits that
minimize entropy production for a final state constrained to
a fixed microscopic probability distribution. However, the
need to specify the final distribution is also a limitation, as
the entropy production might conceivably be reduced by a
different (unknown) choice of final state.
Here, we introduce a framework that uses full control of

a potential to achieve efficient, fast bit erasure without
knowing in advance the “best” final state. Using this
framework, we derive lower and upper bounds on work
dissipated during optimal bit erasure. The bounds are
proportional to the initial microscopic variance of the bit
and confirm that the minimum entropy production is
inversely proportional to protocol duration. We also show
how to calculate the minimum work required for a given
potential shape and given erasure time. Compared to
previous experimental and numerical studies, taking ad-
vantage of full potential control can reduce the cost of fast
erasure by roughly an order of magnitude.
In an accompanying paper [27], we give full details of

the calculations and generalize to the case of partial
erasure of information in the bit.
Thermodynamic cost of finite-time transformations.—

Consider a bit encoded in a system described by a
microscopic variable x. The bit is in state 1 if x > 0 and
state 0 if x < 0. The probability density pðx; tÞ of x is
described by a Fokker-Planck equation:

∂pðx; tÞ
∂t ¼ ∂

∂x
�
pðx; tÞ ∂

∂xVðx; tÞ
�
þ ∂2

∂x2 pðx; tÞ; ð1Þ
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where Vðx; tÞ is the potential energy landscape. In Eq. (1),
we have scaled energy by kBT and lengths by
x0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞp

, the variance of the equilibrium distribution
for the potential Vðx; 0Þ≡ V0ðxÞ. Time is scaled by x20=D,
with D the diffusion coefficient. This description applies to
a broad class of systems, including colloidal particles
trapped in a potential [5–8] and superconducting fluxes
[9]. In such systems, the microscopic state xðtÞ is
coarse grained to two (or more) macrostates that encode
information [1].
Building on ideas from stochastic thermodynamics

[14,15] and optimal-transport theory [28,29], one can
calculate the minimum average work to go from an initial
microscopic equilibrium distribution p0ðxÞ to a final
microscopic distribution pτðxÞ over a time interval of
length τ for protocols having the same start and end point,
with Vðx; 0Þ ¼ Vðx; τÞ≡ V0ðxÞ. Assuming full control
over the potential Vðx; tÞ, one finds [25,26,30,31]

W ¼
Z

∞

−∞
dxpτðxÞ ln

pτðxÞ
p0ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔF

þ 1

τ

Z
1

0

dy½f−10 ðyÞ − f−1τ ðyÞ�2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔiS

;

ð2Þ

where f0=τðxÞ ¼
R
x
−∞ dx0p0=τðx0Þ are the associated cumu-

lative distributions and f−1 their inverses. The quantity ΔF
is the change in nonequilibrium free energy arising solely
because the probability density is transformed from p0ðxÞ
to pτðxÞ, and ΔiS is the average entropy production of the
transformation [32]. A similar expression holds for discrete
systems [33,34]. After the protocol has completed, the
system relaxes back into a local equilibrium state, so that all
work is released as heat into the environment.
For many practical applications, one is interested not in

the exact “microscopic” distribution of the system but rather
in a coarse-grained, “macroscopic” distribution. For exam-
ple, when erasing a bit of memory, one is not interested in the
full distribution of the microscopic variable but only in the
probability for the bit to be in macrostate 0, PL ¼ pðx < 0Þ,
or in macrostate 1, PR ¼ pðx > 0Þ. This means that fully
minimizing the amount of work to go from an initial
macroscopic distribution to a different final macroscopic
distribution implies a secondminimization of Eq. (2) over all
possible microscopic distributions pτðxÞ that are compatible
with the desired final macroscopic distribution. [The initial
distribution p0ðxÞ is fixed if we start in thermal equilibrium.]
Following Refs. [25,26,30,31], we change variables from
fτðxÞ to ΓðxÞ≡ f−1τ ½f0ðxÞ�. The minimum amount of work
required to complete the process is then

Wmin ¼ min
ΓðxÞ

Z
∞

−∞
dxp0ðxÞ

×

�
ln

p0ðxÞ
Γ0ðxÞp0½ΓðxÞ�

þ ½ΓðxÞ − x�2
τ

�
; ð3Þ

where the minimization is done over all ΓðxÞ that correspond
to the correct macroscopic final distribution. For “full”
bit erasure at time τ, the particle is always somewhere
within the region corresponding to macrostate 0 (x < 0), so
that PL ¼ 1 and PR ¼ 0 for t ¼ τ. Consequently,

fτð0Þ ¼ 1; or Γ½f−10 ð1Þ� ¼ 0; ð4Þ

where the first condition again implies that all probability
density is in x < 0 and the second implies that, at t ¼ 0,
we have f0ð∞Þ ¼ 1 and, hence, Γð∞Þ ¼ 0, since Γ maps
positions at time τ to positions at t ¼ 0. For boundary
conditions appropriate to partial erasure, see Ref. [27].
Using the calculus of variations, we find that the optimal

ΓðxÞ, and, therefore, the optimal final microscopic
distribution, obeys the Euler-Lagrange equation [27]

V 0½ΓðxÞ� − V 0ðxÞ
Γ0ðxÞ −

Γ00ðxÞ
Γ0ðxÞ2 þ

2

τ
½ΓðxÞ − x� ¼ 0; ð5Þ

where we have assumed that, at t ¼ 0, the system is in
equilibrium, p0ðxÞ ∼ exp ½−V0ðxÞ�.
Bounds on finite-time bit erasure.—Having formulated a

general theory, we apply it to the problem of bit erasure. We
consider a system described by Eq. (1), with a potential that
is initially symmetric, V0ðxÞ ¼ V0ð−xÞ. Although solving
the minimization condition [Eq. (5)] cannot, in general, be
done analytically, we can nonetheless place upper and
lower bounds on Wmin.
To establish an upper bound for Wmin, we fix the final

microscopic distribution to be the local-equilibrium dis-
tribution that fixes all probability to be in the region x < 0
(Fig. 1, bottom right):

pτðxÞ ¼ pleqðxÞ ¼
�
2p0ðxÞ; x < 0;

0; x > 0:
ð6Þ

FIG. 1. Optimal protocols in the short- and long-time limits.
Starting from the equilibrium distribution p0ðxÞ for a symmetric
potential V0ðxÞ at time t ¼ 0 (left distribution), the system state is
transformed to pτðxÞ at time τ. For τ ≪ 1 (upper right distribu-
tion), the final distribution is approximately the sum of the initial
probability density of the left well plus a sharp peak composed of
probability transported from the right well. For τ ≫ 1 (lower right
distribution), the final distribution is in local equilibrium in the
left well.
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The local equilibrium distribution minimizes the first term in
Eq. (3), in accordance with the boundary condition of full
erasure.
The optimal protocol for this case leads to an average

work Wmin;leq. We have Wmin ≤ Wmin;leq, because con-
straining the final distribution to a local equilibrium can
only increase the work relative to the case where we allow
the final distribution to be selected from a set of distribu-
tions with pτðx > 0Þ≡ 0. In Ref. [27], we show that

Wmin;leq ≤ ln 2þ 2

τ
: ð7Þ

In Ref. [27], we also derive an alternate lower bound for
Wmin;leq based on Ref. [35].
To derive a lower bound onWmin, we observe that Eq. (3)

minimizes the sum of two terms. Minimizing each term
separately then gives a lower bound:

Wmin ≥ min
ΓðxÞ

Z
∞

−∞
dxp0ðxÞ ln

p0ðxÞ
Γ0ðxÞp0½ΓðxÞ�

þmin
ΓðxÞ

Z
∞

−∞
dxp0ðxÞ

½ΓðxÞ − x�2
τ

¼ min
pτðxÞ

Z
∞

−∞
dxpτðxÞ ln

pτðxÞ
p0ðxÞ

þ 1

τ

Z
∞

0

dxp0ðxÞx2

¼ ln 2þ 1

2τ
: ð8Þ

As with the upper bound, the first term of Eq. (8) is
also minimized by the local-equilibrium distribution. By
contrast, the optimal choice of Γ in the second term is
ΓðxÞ ¼ x for x < 0 (which minimizes the integrand) and
¼ 0 for x ≥ 0 (because no probability is left at the end for
x ≥ 0). More visually, the optimal protocol for the second
term “pushes” the probability initially in the right well to a
spike at x ≈ 0−. The probability in the “wrong” well is
moved the minimum amount possible to be in the correct
macrostate—pushed to its edge—while the probability
already in the macrostate is left untouched (Fig. 1, top
right). As τ → 0, the spike of probability at the edge of the
macrostate approaches a delta function.
Piling the probability into a delta function leads to an

infinite contribution from the first term, since the free
energy of a perfectly localized particle is infinite; however,
in the limit τ → 0, the second term has an infinite weight
τ−1 → ∞, allowing for such singular behavior.
As the main result of this paper, we rewrite these bounds

in terms of the original unscaled quantities:

ln 2þ VarðxÞ
2Dτ

≤
Wmin

kBT
≤
Wmin;leq

kBT
≤ ln 2þ 2VarðxÞ

Dτ
: ð9Þ

That is, the cost to fully erase a bit over a finite amount of
time is equal to the Landauer cost ln 2 plus a term that is
determined by the initial variance of the distribution.
Remarkably, for all τ, the minimum entropy production
is always ∼τ−1. We notice, in particular, that the upper and
lower bounds to the entropy production differ by a factor of
4. We can understand this numerical factor by noting that
an approximate expression for the dissipation is

FΔx
kBT

∼
γ

kBT

�
Δx
τ

�
Δx ∼

ðΔxÞ2
Dτ

; ð10Þ

where we apply the friction force F ¼ γ _x ≈ γðΔx=τÞ and
the Einstein relation D ¼ kBT=γ. The quantity Δx is the
typical distance a particle is transported during the protocol.
In the long-time limit, the system stays in local equilibrium,
and the probability from the right well is shifted to the left
well. In the short-time limit, the same probability is moved
only half as far (by symmetry of the potential) to x ¼ 0.
The factor-2 reduction in Δx decreases the dissipation by a
factor of 4.
In special cases, we can saturate the bounds in Eq. (9). In

the fast-erasure limit τ ≪ 1, the τ−1 term in Eq. (8)
dominates, leading to saturation at the lower bound in
Eq. (9), giving a general, closed expression for the cost of
fast erasure of a bit. In the slow-erasure limit τ ≫ 1, the
erasure cost reduces to the Landauer cost, as expected. For
a first-order correction in 1=τ, one can verify that
Wmin ¼ Wmin;leq, saturating the second inequality in
Eq. (9) [27]. Finally, the last inequality in Eq. (9) is
saturated for an initial “two-state” distribution:

p0ðxÞ ¼
1

2

�
δ

�
x −

1

2
Δx

�
þ δ

�
xþ 1

2
Δx

��
; ð11Þ

where Δx is the difference in x between the two states.
Equation (11) is the limiting distribution for a broad class of
double-well potentials with an infinite barrier between
the wells.
Example.—Let the initial energy landscape be (Fig. 2)

V0ðxÞ ¼ Eb

��
x
xm

�
2

− 1

�
2

; ð12Þ

with a barrier Eb ¼ 4 between the wells and xm ≈ 1.04,
which implies an equilibrium variance VarðxÞ ¼ 1.
Figure 2 shows the optimal protocol Vðx; tÞ and
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corresponding densities pðx; tÞ for τ ¼ 0.2. Once the
optimal ΓðxÞ is determined, the intermediate probability
distribution pðx; tÞ can be computed, which gives the
intermediate control protocol Vðx; tÞ by inverting the
Fokker-Planck equation [Eq. (1)]. See Ref. [27], Sec. II
for full details. The protocol has jump discontinuities when
passing from V0ðxÞ (black curve) at t ¼ 0− to Vðx; t ¼ 0þÞ
(red curve) and similarly in passing from Vðx; t ¼ 1−Þ to
V1ðxÞ ¼ V0ðxÞ. At t ¼ τ, we add a δð0Þ barrier that keeps
probability from leaking back into the right well for t > τ.
Notice that no work is done for t > τ. The probability that is
trapped in the left well then relaxes to local equilibrium,
after which the barrier may be removed. See the bottom
plots.
We then numerically calculate the upper and lower

bounds [Eqs. (7) and (8)] and Wmin and Wmin;leq for full
erasure. Figure 3 shows that the upper and lower bounds are
satisfied. We also note that Wmin ≈Wmin;leq in the slow-
driving limit and thatWmin saturates the lower bound in the
fast-driving limit. For Eb ≫ 1, the potential wells are quite
steep, and the Boltzmann distribution resembles quite well
the two-delta-function distribution [Eq. (11)], which
explains why Wmin;leq is close to the upper bound.

Comparison with experimental and numerical results.—
Over the past decade, several high-precision tests of the
Landauer principle have been performed [5,6,8,36,37]. In
general, those protocols satisfied W=kBT − ln 2 ∼ τ−1 in
the slow-driving limit. Therefore, for large τ, the measured
work in those experimental protocols has qualitatively the
same form as the optimal protocol, raising the question of
how close the experimental results are to the optimum.
From Table I, we can see that the measured amount of
entropy production exceeds the optimum by factors of 2–6
(see Supplemental Material [38]).
Furthermore, we can also compare our bound to numeri-

cal studies of bit erasure. Zulkowski and DeWeese [10]
calculate the amount of work to erase a bit in a potential
consisting of two flat wells of length l, separated by a thin
wall of arbitrary height. If one controls only the height of
the wells and uses slow driving, they showed that the
minimum amount of work to erase a bit is given by
Dτ=VarðxÞðW=kBT − ln 2Þ ¼ 3½ð ffiffiffi

2
p

− 1Þ2 þ 1� ≈ 3.51.
By contrast, Boyd et al. [12] derived a general framework
to calculate the work to erase a bit via a protocol that keeps
the system always in local equilibrium. For the flat-well
potential used by Zulkowski and DeWeese, this protocol
actually performs better than the limited-control
protocol used in Ref. [10]: Dτ=VarðxÞðW=kBT − ln 2Þ ¼
π2ð2 − ffiffiffi

2
p Þ=2 ≈ 2.89. However, for a double-well potential

FIG. 2. Erasure protocol for τ ¼ 0.2 and Eb ¼ 4. The original
and final double-well potentials V0ðxÞ are shown in black at the
top and bottom of the left column. Red potentials Vðx; tÞ denote
the control. The control is carried out for 0þ < t=τ < 1−, and the
potential changes discontinuously at t ¼ 0 and t=τ ¼ 1. At
t=τ ¼ 1, the probability distribution is peaked near x ¼ 0. There-
fore, an infinitesimally narrow, extra barrier δð0Þ is added to
V0ðxÞ to prevent probability from leaking back into the right well.
It is removed at a later time t=τ ≫ 1, after the system has relaxed
to local equilibrium and the peak in the probability distribution
has disappeared. The right-hand column shows corresponding
probability distributions.

FIG. 3. Minimum entropy production in excess of the Landauer
bound. The shaded regions show upper (2τ−1) and lower (τ−1=2)
bounds. The inset shows a≡ τðWmin=kBT − ln 2Þ relative to its
lower bound. Red curves are plotted for Eb ¼ f0; 2; 4; 6; 8g.
Heavier lines denote the Eb ¼ f0; 8g cases.

TABLE I. Comparison between work measurements found in
the literature and Wmin in terms of VarðxÞ=Dτ [38].

Experiment/numerics W=kBT − ln 2 Wmin=kBT − ln 2 Ratio

Bérut et al. [5,36,37] 10.2 1.80 5.67
Gavrilov et al. [8] 7.20 1.82 3.96
Jun et al. [6] 5.67 1.82 3.11
Zulkowski et al. [10] 3.51 1 3.51
Boyd et al. [12] 2.89 1 2.89
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of the form of Eq. (12) and Eb ¼ 10, applying the method
of Ref. [12] leads to average work values that are several
orders of magnitude larger.
All the above protocols were explored in the slow

(τ → ∞) limit. But we have shown here that the entropy
production for optimal protocols, when scaled by
VarðxÞ=Dτ, drops to 1=2 for fast driving (τ → 0). Thus,
for fast erasure, our protocol can improve efficiency by up
to a further factor of 4.
Conclusions and outlook.—When erasing a bit, dis-

sipation is minimized by moving probability as little as
possible, given the final-state constraint. Long protocols are
automatically in local equilibrium, but short protocols can
increase performance by moving probability to the edge of
the desired macrostate. In one dimension, the move is half
the distance compared to one that maintains local equi-
librium, reducing dissipation by up to a factor of 4.
We suggest three extensions of our formalism: (i) Higher

dimensions.—The factor-4 improvement results from the
one-dimensional geometry. Although the extension to
higher-dimensional systems is nontrivial as the dissipation
depends on the Wasserstein distance between the initial and
final distribution, which generally cannot be calculated
analytically for higher-dimensional systems [28], it might
be possible to use symmetry properties to extend our result
to higher-dimensional systems. (ii) Reduced damping.—Bit
erasure might be more efficient for critically damped
systems under limited control [39]. On the other hand,
the minimum amount of dissipation needed to transform an
overdamped system from an initial to a final state is also a
lower bound for the amount of dissipation needed to
perform the same transformation in underdamped systems
[40]. Therefore, we expect our lower bound [Eq. (8)] to also
hold for underdamped systems. (ii) Quantum effects.—
Landauer’s principle also holds for quantum systems
strongly interacting with their environment [40,41].
Furthermore, stronger bounds have recently been derived
to include quantum-mechanical effects [42,43]. It would be
interesting to see whether similar quantum corrections can
be calculated for Eq. (9).
A remarkable feature of the optimal solutions is the

existence of various discontinuities and singularities in the
control. Here, as elsewhere [16], there are discontinuities in
the potential at the beginning and end of the protocol; in
addition, the intermediate-time potential can have near
discontinuities in the slope [26], which become more
pronounced for fast driving (Fig. 2). Unfortunately, experi-
mental systems are likely unable to reproduce such
protocols exactly [44,45]. Moreover, optimal protocols
assume a “perfect” model of the system under control.
But parameters are always uncertain, and the shape of the
underlying potential V0ðxÞ may simplify a more complex
reality. For such reasons, experiments can only approxi-
mate the optimal solutions derived here. The challenge—
and this is what makes optimal control a problem of physics

as well as mathematics—is to find good approximations to
the “best” control [46] that are robust to imperfections of
system models and to experimental constraints.

We thank David Sivak and Raphaël Chétrite for helpful
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