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We show that the inherently large interatomic interactions of a Bose-Einstein condensate (BEC) can
enhance the sensitivity of a high precision cold-atom gravimeter beyond the shot-noise limit (SNL).
Through detailed numerical simulation, we demonstrate that our scheme produces spin-squeezed states
with variances up to 14 dB below the SNL, and that absolute gravimetry measurement sensitivities between
two and five times below the SNL are achievable with BECs between 104 and 106 in atom number. Our
scheme is robust to phase diffusion, imperfect atom counting, and shot-to-shot variations in atom number
and laser intensity. Our proposal is immediately achievable in current laboratories, since it needs only a
small modification to existing state-of-the-art experiments and does not require additional guiding
potentials or optical cavities.
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Atom interferometers provide state-of-the-art measure-
ments of gravity [1–7] and gravity gradiometry [8–13].
Future applications of cold-atom gravimetry are wide
ranging [14], including inertial navigation [15–17], mineral
exploration [18–20], groundwater monitoring [21], satellite
gravimetry [22,23], and weak equivalence principle experi-
ments that test candidate theories of quantum gravity
[24–26]. These applications require significant improve-
ments to cold-atom gravimeters: improved precision [27],
increased stability [28], increased dynamic range [29],
increased measurement rate [30], and decreased size,
weight, and power (SWAP) [31–33].
Quantum entanglement offers a promising route to

improved cold-atom gravimetry, since it enables relative-
phase measurements below the shot-noise limit (SNL).
Metrologically useful entanglement has been generated in
large cold-atom ensembles via atom-atom [34–40] and atom-
light interactions [41–44], with sub-shot-noise atom inter-
ferometry demonstrated in proof-of-principle experiments
[45–51]. However, no quantum-enhanced (sub-shot-noise)
atom interferometer has demonstrated any sensitivity to
gravity, even in laboratory-based proof-of-principle appara-
tus. The key challenge is that most methods of generating
entangled atomic states are incompatible with the stringent
requirements of precision gravimetry. Cold-atom gravime-
ters require the creation and manipulation of well-defined
and well-separated atomic matterwave momentum modes
[52,53]. Although entanglement generation between internal
atomic states is relatively mature, no experiment has shown
that entanglement between internal states can be converted
into entanglement between well-separated, controllable
momentum modes suitable for gravimetry. There are pro-
mising proposals for creating squeezed momentum states for
atom interferometry [54–57], however these require atom

interferometry within an optical cavity which, whilst
possible [58], is technically challenging and not always
viable (e.g., low-SWAP scenarios). Even if entangled
momentum states are available, this does not guarantee that
they can be achieved with large atom number sources, nor
that a high degree of coherence can be maintained between
momentum modes for significant interrogation times.
In this Letter, we propose a quantum-enhanced ultracold-

atom gravimetry scheme that operates in free space. Our
scheme uses the large interatomic collisions of a Bose-
Einstein condensate (BEC) to generate metrologically
useful entanglement via one-axis twisting (OAT) [59,60],
a nonlinear self-phase modulation that can reduce the
relative number fluctuations between two well-defined
momentum modes. It does not require additional guiding
potentials or optical cavities, making it suitable for low-
SWAP scenarios. Our scheme requires only a small
modification to existing state-of-the-art experiments, so it
is immediately achievable in current laboratories. We show
that significant spin squeezing is attainable for large atom
numbers and that this spin squeezing results in a useful
improvement to absolute gravimetry sensitivity. We further
show that our scheme is robust to phase diffusion and
common experimental imperfections, including imperfect
atom counting and shot-to-shot variations in atom number
and laser intensity.
Gravimetry with a BEC.—Commonly, an atomic Mach-

Zehnder (MZ) is used for gravimetry, where state-changing
Raman transitions act as beam splitters (π=2 pulses)
and mirrors (π pulses) [61]. Raman transitions, achieved
with two counterpropagating laser pulses of wave vector
kL, coherently couple two internal states j1i and j2i.
Transitions from j1i to j2i impart 2ℏkL momentum to
the atoms, giving the momentum separation needed for

PHYSICAL REVIEW LETTERS 125, 100402 (2020)

0031-9007=20=125(10)=100402(8) 100402-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3015-6511
https://orcid.org/0000-0003-1131-9271
https://orcid.org/0000-0003-1534-1492
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.100402&domain=pdf&date_stamp=2020-09-03
https://doi.org/10.1103/PhysRevLett.125.100402
https://doi.org/10.1103/PhysRevLett.125.100402
https://doi.org/10.1103/PhysRevLett.125.100402
https://doi.org/10.1103/PhysRevLett.125.100402


gravimetry. For N uncorrelated atoms a uniform gravita-
tional acceleration can be measured with single-shot
sensitivity Δg ¼ 1=ð ffiffiffiffi

N
p

k0T2Þ, where k0 is the component
of 2kL aligned with gravity and T is the time between
pulses (interrogation time) [61].
There are advantages to using BECs for precision gravi-

metry. A BEC’s large coherence length and narrow momen-
tum width enables high fringe contrast [7,62], improves the
efficiency of largemomentum transfer beam splitting [63,64],
and mitigates many systematic and technical noise effects
[65,66]. However, a BEC’s large interatomic interactions are
generally considered an unwanted hinderance. Interatomic
collisions couple number fluctuations into phase fluctuations,
causing phase diffusion, which degrades sensitivity [67,68].
Consequently, the effects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s first
beam splitting pulse [Fig. 1(a)], which converts most of the
collisional energy to kinetic energy. This reduces phase
diffusion and gives excellent mode matching (required for
high fringe contrast), since the BEC’s spatial mode is largely
preserved under free expansion [69,70].
Quantum-enhanced gravimetry with a BEC.—Our

scheme, depicted in Fig. 1(b), is a modification of
the standard MZ. Instead of “wasting” the strong inter-
atomic interactions during this initial expansion period, our

scheme exploits them with a “state-preparation” interfero-
meter that generates spin squeezing via OAT. Representing
the state as a Husimi-Q distribution on the Bloch sphere
[71,72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beam splitter (BS2) rotates the
distribution such that it is more sensitive to phase fluctua-
tions within the interferometer, resulting in reduced relative
number fluctuations at the output. Necessarily, BS2 is not a
50=50 beam splitter, with the relative population transfer
dependent on the degree of squeezing. Unlike trapped
schemes, where interatomic collisions cause unwanted
multimode dynamics that make it difficult to match the
two modes upon recombination [73], a BEC’s spatial mode
is almost perfectly preserved under free expansion, even for
large atom numbers and collisional energies. The two
modes are therefore well matched throughout the interfero-
meter sequence. Furthermore, since the collisional energy
is converted to kinetic energy during expansion, the
interatomic interactions effectively “switch off” after
∼10 ms, minimizing their effect during most of the
interferometer sequence. For T ≫ TOAT, our scheme
enables a gravity measurement with sensitivity [74]

Δg ¼ ξ
ffiffiffiffi
N

p
k0T2

¼ 1
ffiffiffiffi
N

p
k0T2

min
θ;ϕ

�
NVarð Ĵθ;ϕÞ
h Ĵπ

2
;ϕþπ

2
i2

�1
2

; ð1Þ

where ξ≡minθ;ϕξθ;ϕ is the spin squeezing parameter
[60,87] and Ĵθ;ϕ ¼ sin θ sinϕĴx þ sin θ cosϕĴy þ cos θĴz.
Here Ĵi ¼ 1

2

R
drψ†ðrÞσiψðrÞ are pseudospin operators,

where σi are the set of Pauli matrices, ψðrÞ ¼
½ψ̂1ðrÞ; ψ̂2ðrÞeik0z�T with ψ̂1ðrÞ and ψ̂2ðrÞ being field
operators describing the BEC’s two internal states j1i
and j2i, respectively, and i ¼ x, y, z. Since ½ψ̂ iðrÞ;
ψ̂†
jðr0Þ� ¼ δijδðr − r0Þ, ½Ĵi; Ĵj� ¼ iϵijkĴk with ϵijk the

Levi-Civita symbol. Physically, Ĵz is proportional to the
population difference between the two internal states,
whilst Ĵx and Ĵy encode coherences between the modes.
Equation (1) shows that our scheme is capable of high
precision, quantum-enhanced gravimetry provided ξ < 1,
which is a sufficient condition for spin squeezing [88].
Analytic model of spin squeezing.—In what follows, we

assume Raman pulse durations that are much shorter than
the timescale for atomic motional dynamics. Typical atom
interferometers operate in this regime, allowing us to treat
the Raman coupling as an instantaneous beamsplitter
unitary Ûθ;ϕ [53]:

Û†
θ;ϕψ̂1Ûθ;ϕ ¼ cos

�
θ

2

�
ψ̂1 − ieiϕ sin

�
θ

2

�
ψ̂2eik0z; ð2aÞ

Û†
θ;ϕψ̂2Ûθ;ϕ ¼ cos

�
θ

2

�
ψ̂2 − ie−iϕ sin

�
θ

2

�
ψ̂1e−ik0z; ð2bÞ
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FIG. 1. (a) Space-time diagram illustrating SNL gravimetry with
a BEC. Unwanted interatomic interactions are reduced by freely
expanding the BEC for duration Texp. A π=2 − π − π=2 Raman
pulse sequence then creates a MZ interferometer of interrogation
time T. The two interferometer modes correspond to internal
states j1i (red) and j2i (blue) with ℏk0 momentum separation.
(b) Quantum-enhanced ultracold-atom gravimetry. During initial
expansion duration Texp ¼ 2TOAT, the BEC’s interatomic inter-
actions generate spin squeezing via OAT. (c) Bloch sphere
representation of state during quantum-enhanced gravimetry.
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where θ and ϕ are the beam splitting angle and phase,
respectively.
Typical spin squeezing models approximate ψ̂1ðrÞ ≈

u1ðrÞâ1 and ψ̂2ðrÞ ≈ u2ðrÞeik0zâ2, where bosonic modes
âi correspond to the two interferometer paths [34]. This
neglects the effect of imperfect spatial-mode overlap on the
spin squeezing, which can be substantial [73]. Here,
we assume ψ̂1ðr; tÞ ¼ u1ðr; tÞâ1 þ v̂1ðr; tÞ and ψ̂2ðr; tÞ ¼
u2ðr; tÞeik0zâ2 þ v̂2ðr; tÞ, where

R
drjuiðr; tÞj2 ¼ 1 and

v̂iðr; tÞ are “vacuum” operators satisfying v̂iðr; tÞjΨi ¼ 0

and ½v̂iðr;tÞ; v̂†jðr;tÞ�¼δi;j½δðr−r0Þ−uiðr;tÞu�jðr0;tÞ� [75].
We calculate ξθ;ϕ at t ¼ 2TOAT immediately before BS2,

with the best spin squeezing ξ achieved by optimizing θ
and ϕ in the unitary Ûθ;ϕ for BS2. The BEC’s evolution
between pulses approximately corresponds to OAT
Hamiltonian ĤOATðtÞ¼ℏχðtÞĵz2, where ĵz¼1

2
ðâ†1â1−â†2â2Þ,

χðtÞ ¼ χ11ðtÞ þ χ22ðtÞ − 2χ12ðtÞ, and χijðtÞ ¼ ðgij=2ℏÞR
drjuiðr; tÞj2jujðr; tÞj2, with gij ¼ 4πℏ2aij=m and s-wave

scattering lengths aij [74].
In the linear squeezing regime, the minimum spin

squeezing is [74]

ξ2 ≈
1 − 1

2
jQjNλð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ jQj2N2λ2

p
− jQjNλÞ

jQj2 ; ð3Þ

where λ≡R 2TOAT
0 dt0χðt0Þ andQ≡jQjeiφ¼R

dru�1ðr;2TOATÞ
u2ðr;2TOATÞ. Physically, jQj quantifies how well the
interferometer modes â1 and â2 are spatially matched at
BS2 (t ¼ 2TOAT), with jQj ¼ 1 indicating perfect spatial
overlap. Minimum spin squeezing requires θ ≈ ð3π=2Þ −
1
2
tan−1½2=ðNjQjλÞ� and ϕ ¼ −φ for the BS2 unitary. Since

λ > 0, Eq. (3) shows that ξ < 1 always, provided good
mode overlap jQj is maintained.
We estimate Q and λ by numerically solving the two-

component Gross-Pitaevskii equation (GPE) for mean-
field wave functions Ψiðr; tÞ and identifying uiðr; tÞ ¼
Ψiðr; tÞ=

ffiffiffiffi
N

p
[74]. For concreteness, we take j1i and j2i as

the jF ¼ 1; mF ¼ 0i and jF ¼ 2; mF ¼ 0i hyperfine states,
respectively, of 87Rb with ða11; a22; a12Þ ¼ ð100.4; 95.0;
97.66Þa0 and k0 ¼ 2kL ¼ 1.61 × 107m−1 (780 nm D2
transition). Figure 2 illustrates the key advantages of
our scheme by plotting how χðtÞ, λðtÞ ¼ R

t
0 dt

0χðt0Þ and
jQðtÞj ¼ j R dru�1ðr; tÞu2ðr; tÞj vary during the interferom-
eter sequence. All three scattering lengths are of similar
magnitude, so during the short duration where the two
modes are strongly overlapped, χðtÞ is almost zero and little
spin squeezing is produced. However, the two modes
rapidly separate (∼1 ms) whilst the interatomic interactions
are still significant, substantially increasing λðtÞ. Most of
this increase occurs over the next 10 ms; after this, free
expansion rapidly reduces the collisional energy and there-
fore χðtÞ. Fortunately, this expansion is self-similar, largely

preserving the mode shape, allowing high spatial-mode
overlap (jQj ∼ 1) at the interferometer output.
Spin squeezing results.—Although this analytic model

provides qualitative insights into our scheme’s viability,
quantitative modeling requires a multimode description
that, unlike the GPE, incorporates the effect of quantum
fluctuations. This description is provided by the truncated
Wigner (TW) method, which has successfully modeled
BEC dynamics in regimes where nonclassical particle
correlations become important [76,77,89–95]. In this
approach, the BEC dynamics are efficiently simulated by
a set of stochastic differential equations (SDEs), with
averages over the solutions of these SDEs corresponding
to symmetically ordered operator expectations [74].
Figure 3 compares the spin squeezing parameter com-

puted from our analytic model Eq. (3), with λ and jQj
determined from 3D GPE simulations, to a direct compu-
tation of ξ via 3D TW simulations. We consider two
scenarios: an initial spherical BEC prepared in a spherical
harmonic trap of frequency 50 Hz [Fig. 3(a)] and an initial
“pancake” BEC prepared in a cylindrically symmetric
harmonic trap with frequencies ðfr; fzÞ ¼ ð32; 160Þ Hz
in the radial and z directions [Fig. 3(b)]. Although the
analytic model correctly captures the atom-number depend-
ence, it overestimates the degree of squeezing by roughly a
factor of two. An exception is for the largest atom numbers
considered in the spherical case, where TW predicts much
worse squeezing. For these atom numbers, the interatomic
interactions are sufficiently strong such that intercompo-
nent scattering strongly degrades the mode overlap, even
though the clouds are initially overlapped for only ∼1 ms
[Figs. 3(e) and 3(f)]. This is not seen in the GPE
simulations [Figs. 3(c) and 3(d)] which neglect sponta-
neous scattering processes that clearly matter. In contrast,
for an initially pancake-shaped BEC that is spatially tight
in z, the two modes spatially separate on a timescale
much faster than the spherical case. This mitigates the
effect interatomic interactions have on mode matching
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FIG. 2. Analytic spin squeezing model parameters determined
from a GPE simulation of our scheme up to t ¼ 2TOAT, with
TOAT ¼ 20 ms and an N ¼ 104 atom BEC initially prepared in a
spherical harmonic trap of frequency 50 Hz. (a) Effective
squeezing rate χðtÞ (blue, solid) and squeezing degree λðtÞ
(orange, dashed). (b) Mode overlap jQðtÞj. (Bottom) Normalized
density slices at radial coordinate r ¼ 0.
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[Figs. 3(g) and 3(h)], allowing significant squeezing even
for N ¼ 106 atoms.
Simulation of full interferometer sequence.—Although

the spin squeezing parameter shows that our scheme
produces significant spin squeezing, it does not confirm
that this spin squeezing leads to a more sensitive measure-
ment of g. Residual interatomic interactions may further
degrade mode overlap during the remainder of the inter-
ferometer sequence and can couple to quantum fluctuations
in Ĵz, causing phase diffusion [67,68]. Both effects
may degrade the sensitivity from the value predicted by
Eq. (1). We confirm that these effects are not significant
in our scheme by simulating the full interferometer
sequence and directly computing the sensitivity via
Δg2 ¼ VarðĴzÞ=ð∂hĴzi=∂gÞ2. 3D TW simulations of the
full interferometer sequence are computationally infeasible,
since they require prohibitively large grids and numbers of
trajectories. Instead, we use an effective 1D TW model for
these simulations, which assumes a Thomas-Fermi radial
profile that self-similarly expands according to scaling
solutions [74]. As shown in Fig. 3, this model perfectly
agrees with 3D TW simulations except for the largest atom
numbers.
Our scheme’s sensitivity for an initial pancake BEC of

N ¼ 104 atoms and T ¼ 60 ms is shown in Fig. 4.
Although phase diffusion degrades the sensitivity for small
TOAT, its effect rapidly reduces for increasing TOAT,
becoming negligible for TOAT ≳ 15 ms. We compare our
scheme to two SNL cold-atom gravimeters with the same
initial BEC and total interferometer time 2ðTOAT þ TÞ:
(1) the conventional BEC gravimeter depicted in Fig. 1(a)
(MZ with initial Texp ¼ 2TOAT period of free expansion)

and (2) a MZ with no initial period of free expansion,
thereby having an increased interrogation time T þ TOAT.
As expected, the former has negligible phase diffusion,
attaining the ideal SNL result Δg ¼ 1=ð ffiffiffiffi

N
p

k0T2Þ. The
latter suffers from considerable phase diffusion, far out-
weighing the benefit of increased interrogation time. Our
scheme outperforms both SNL gravimeters, demonstrating
the clear benefit of using the initial 2TOAT period to
produce spin squeezing.
Experimental imperfections.—Finally, we assess the

effect of three common experimental imperfections.
(1) Shot-to-shot fluctuations in laser intensity: although

the laser pulse intensity is stable during a single interfer-
ometer run, it can vary between experimental runs [96].
Such shot-to-shot intensity fluctuations cause an offset δθ
to the angle of all beam splitters and mirrors in that run,
where δθ varies from shot to shot [50]. To first order,
δθ ≈ 2Δf, where Δf is the fractional change in the
population ratio due to imperfect beam splitting (e.g.,
Δf ¼ 0.02 means that a 50=50 beam splitter is instead
performed as a 48=52 beam splitter). We simulated the full
interferometer sequence assuming that all five laser pulses
suffered from Gaussian-distributed shot-to-shot fluctua-
tions δθ of variance σ2θ. As shown in Fig. 5(a), these shot-
to-shot fluctuations have a relatively small effect on Δg,
since common rotation errors from the different pulses
largely cancel.
(2) Shot-to-shot fluctuations in atom number: the

optimal rotation angle θ for BS2 depends on the atom
number. This cannot be known precisely and varies
10%–20% for different experimental runs [7,62].
Consequently, θ will deviate from the optimum from shot
to shot, degrading ξ. We quantify this by assuming
Gaussian-distributed shot-to-shot atom number fluctuations

FIG. 3. Minimum spin squeezing parameter ξ for TOAT ¼ 10 ms
and atom number N [74]. In (a) the BEC is initially prepared in a
spherical harmonic trap (fr ¼ fz ¼ 50 Hz), whereas in (b) an
initial “pancake” BEC is prepared in a cylindrically symmetric
harmonic trap (fr ¼ 32 Hz, fz ¼ 160 Hz). TW simulations are
compared to Eq. (3) with model parameters determined from GPE
simulations (“3D GPE”). (c)–(h) Density profiles for N ¼ 106 at
t ¼ 2TOAT. The analytic model fails here for the spherical BEC
case since spontaneous scattering degrades mode overlap.
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FIG. 4. One-dimensional TW calculations of sensitivity Δg for
an N ¼ 104 atom BEC initially prepared in a cylindrically
symmetric harmonic trap (fr ¼ 32 Hz, fz ¼ 160 Hz). From
top to bottom: (red) MZ with total interrogation time T þ TOAT
(no initial period of free expansion), (green) BEC undergoes free
expansion for duration 2TOAT, followed by MZ of interrogation
time T [Fig. 1(a)]; (magenta) quantum-enhanced BEC gravimetry
[Fig. 1(b)]; (blue) Eq. (1) with ξ computed via TW. All four cases
have the same total duration 2ðTOAT þ TÞ with T ¼ 60 ms.
The SNL for an ideal MZ of interrogation time T (dashed)
and T þ TOAT (dot dashed) are marked for comparison. Our
quantum-enhanced scheme always outperforms MZ schemes,
even when phase diffusion is non-negligible.
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about mean N with variance σ2N . To leading order, optimal
BS2 parameters for atom number N give ξðσNÞ≲ ξþ
½1=ð2jQj2Þ�ðσN=NÞ2 [74], so shot-to-shot atom number
fluctuations weakly impact the spin squeezing. This is
confirmed by TW simulations [Fig. 5(b)].
(3) Imperfect atom detection: we model imperfect

detection resolution as a Gaussian noise of variance
ðΔnÞ2, corresponding to uncertainty Δn in the measured
atom number. Imperfect detection increases the variance in
Ĵz, giving poorer sensitivity Δg2 ¼ ½VarðĴzÞ þ Δj2zÞ�=
ð∂hĴzi=∂gÞ2, where Δjz ¼ Δn=

ffiffiffi
2

p
. Then Δg is given by

Eq. (1) with a modified spin squeezing parameter ξðΔnÞ2 ≈
ξ2 þ ð2=NÞΔn2 [97]. Figure 5(a) plots the dependence of ξ
on Δn. Although the requirements are stringent, they are
achievable and comparable to other spin-squeezing experi-
ments. For example, Ref. [98] reports Δn ∼ 8 for an
N ¼ 5 × 105 atom ensemble, which would minimally
impact our scheme’s sensitivity.
Conclusions.—We have presented a scheme for quan-

tum-enhanced gravimetry that exploits a BEC’s inherently
strong interatomic interactions, rather than simply remov-
ing them through an initial free expansion period. This
scheme allows high-precision gravimetry up to a factor of
five below the SNL and is robust to a range of experimental
imperfections. Concretely, a quantum-enhanced gravimeter
with N ¼ 106 and ξ ¼ 0.2 is equivalent to a SNL gravi-
meter with N ¼ 2.5 × 107—a challenging atom number to
attain with current cooling methods [65]. Equivalently, for a
fixed sensitivity, ξ ¼ 0.2 allows a fivefold reduction in
device size, enabling the more compact gravimeters needed
for low-SWAP scenarios. Larger values of k0, obtainable
via Bragg pulses [5], could reduce the initial period of time
where the two modes are overlapping. This would further
reduce the deleterious effect of spontaneous scattering at
large N, potentially allowing more significant degrees of
spin squeezing. Since our proposal operates in free
space, requiring only a small modification to existing
laboratory setups, it provides a path towards realizing
quantum-enhanced cold-atom gravimetry in the immediate
future.
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