
 

Intrinsic Mechanism for Anisotropic Magnetoresistance and Experimental Confirmation
in CoxFe1− x Single-Crystal Films

F. L. Zeng,1,* Z. Y. Ren,2,3,* Y. Li,4,5 J. Y. Zeng,1 M.W. Jia,1 J. Miao,2 A. Hoffmann,5,§

W. Zhang,4,5 Y. Z. Wu,1,6,† and Z. Yuan 3,‡
1Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

2School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China

4Department of Physics, Oakland University, Rochester, Michigan 48309, USA
5Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

6Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

(Received 18 January 2020; revised 13 July 2020; accepted 31 July 2020; published 24 August 2020)

Using first-principles transport calculations, we predict that the anisotropic magnetoresistance (AMR) of
single-crystal CoxFe1−x alloys is strongly dependent on the current orientation and alloy concentration. An
intrinsic mechanism for AMR is found to arise from the band crossing due to magnetization-dependent
symmetry protection. These special k points can be shifted towards or away from the Fermi energy by
varying the alloy composition and hence the exchange splitting, thus allowing AMR tunability. The
prediction is confirmed by delicate transport measurements, which further reveal a reciprocal relationship
of the longitudinal and transverse resistivities along different crystal axes.
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The spin-dependent transport properties of magnetic
materials are the basis of spintronics devices used, for
example, for magnetic sensing and data storage [1]. The
electrical conductance of a magnetic device usually depends
on its magnetization configuration, resulting in so-called
magnetoresistance (MR) effects. Among these effects,
anisotropic magnetoresistance (AMR) [2–5] is fundamental
for magnetic materials. It describes the dependence of the
longitudinal electrical resistivity on the magnetization direc-
tion relative to the electric current in ferromagnetic materials.
AMR arises from the relativistic spin-orbit interaction

(SOI), which couples the orbital motion of electrons with
their spin angular momentum. The SOI leads to other spin
transport phenomena, such as the anomalous Hall effect [6]
and spin Hall effect [7], whose microscopic mechanisms
have been extensively studied experimentally and theoreti-
cally. The extrinsic contributions due to impurity scattering,
including skew scattering and side jump, have been
identified, as has the intrinsic mechanism that results from
the Berry curvature [8] of the energy bands. In contrast, the
microscopic understanding of AMR is still unsatisfactory
after a long history of study, especially in single-crystal
materials [9–18]. Phenomenologically, AMR can be

described by a conductivity tensor, which is a function
of the magnetization and current directions with respect to
the crystallographic axes [2,3]. Alternatively, a two-current
conduction model can be used to understand AMR, in
which experimental values are usually needed to determine
spin mixing parameters [5].
Recently, many SOI-driven MRs have been discovered,

including spin-Hall [19], Rashba [20], and spin-orbital MRs
[21], which also result in renewed interest in AMR, as it is a
basic SOI-induced MR. Based on impurity scattering, some
microscopic mechanisms for AMR have been identified,
where the free-electron-like conduction bands were usually
applied [22]. Nevertheless, the intrinsic band-structure effect
on AMR that is fundamental in physics and applicable to
pure ferromagnetic metals is not yet clear. The lack of a
comprehensive understanding of AMR further hampers its
manipulation and application in spintronics devices.
In this Letter, we take a single-crystalline CoxFe1−x

alloy as an example and perform a joint experimental
and theoretical study of its AMR effect. The CoFe alloy
simultaneously has a large magnetization and very low
damping [23,24] with strong anisotropy [25], making it
already an important material in industry. The calculated
AMR exhibits a strong dependence on the current direction,
and its amplitude is larger in the alloy regime than in the
pure-metal limits. Detailed analysis reveals that the special
k points near Fermi energy play an essential role, where
energy bands form crossing and anticrossing depending on
the magnetization direction. This suggests an “intrinsic”
mechanism for AMR arising from the band structure in
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addition to the “extrinsic” mechanisms based on the
impurity-scattering picture. The predicted AMR properties
are quantitatively confirmed by our transport experiments.
A reciprocal relationship of the longitudinal and transverse
resistivity is obtained along the h110i and h100i crystal
axes.
AMR from first principles.—The resistivity ρxx of a

single-crystal CoxFe1−x alloy is calculated using the first-
principles Landauer-Büttiker formalism including the SOI
[26,27]. For J along [100], we use a Cartesian coordinate
system with xk½100�, yk½010�, and zk½001�. Then, the
calculated ρxx of Co0.5Fe0.5 is plotted in Fig. 1(c) as a
function of theM direction, where the angles α, β, and γ are
explicitly defined in Fig. 1(b). As α or γ varies, ρxx exhibits
a twofold symmetry, and the maximum (minimum) of
ρxx occurs for JkM (J⊥M). A much weaker fourfold
symmetry is found with varying β. The resistivity is shown
in Fig. 1(d) for Jkxk½110�, yk½1̄10�, and zk½001�, where
ρxxðαÞ shows a weak fourfold symmetry, in sharp contrast
to the case of Jk½100�. The variations in ρxx are larger with
rotation of β and γ, and both exhibit a twofold symmetry.
The calculated resistivity for Jk½110� shows an interesting
relationship of ρx ≈ ρy > ρz with ρk ≡ ρxxðMk̂Þ and
k ¼ x; y; z, which is in sharp contrast to the ordinary
AMR relationship ρx > ρy ¼ ρz and has never been
reported for any MRs.
We plot the largest variation in the resistivity Δρxx ≡

max½ρxxðαÞ� −min½ρxxðαÞ� in Fig. 1(e) as a function of Co
concentration x. Here, a significant difference is seen for

Jk½110� and Jk½100�: Δρ½110�xx is at most 0.05 μΩ cm for all

concentrations, while Δρ½100�xx is as large as 0.3 μΩ cm

at x ¼ 0.5. In addition, this giant current-orientation-
dependent AMR is found to be more pronounced in alloys
than in pure metals. This is counterintuitive because one
would expect that the random arrangement of Co and Fe
atoms in CoxFe1−x alloys would lower the crystalline
symmetry of pure metals.
The intrinsic mechanism for AMR.—To understand the

calculated AMR and unravel its microscopic nature, we
focus on the electronic structure of bcc CoxFe1−x alloys.
Applying the coherent potential approximation, we self-
consistently compute auxiliary potentials for Co and Fe in
CoxFe1−x alloys [37], and these effective potentials are
randomly distributed in the transport calculations. It is
instructive to place the “effective Fe” potential on a perfect
bcc lattice and non-self consistently calculate the band
structure [26]. Then, we perform the same calculation for
bcc Co using the “effective Co” potential. These calculated
band structures reflect the averaged electronic properties of
Fe and Co atoms, whereas the bands are smeared in alloys
due to the random arrangement of Fe and Co atoms.
The bands of Fe in Co0.5Fe0.5 along [100] for α ¼ 0° are

plotted in Fig. 2(a), where a gap of ∼0.1 eV appears
near EF, as highlighted by the red frame. When the

FIG. 1. (a) Sketch of the transport geometry in the calculation.
(b) Definition of angles α, β, and γ in Cartesian coordinates. The
x axis is always defined along the electric current J. Calculated
ρxx of Co0.5Fe0.5 as a function of α, β, and γ for Jk½100� (c) and
Jk½110� (d). (e) Largest variation in Δρxx of the CoxFe1−x alloy
when varying α as a function of Co concentration x.

FIG. 2. Calculated band structure along [100] using the effective
potentials of Fe (a) and Co (b) in Co0.5Fe0.5. (c) Nodal line in the
(010) plane, to which the band crossing in (a) at α ¼ 90° belongs.
Dispersion of the two bands forming the nodal line at α ¼ 90° (d)
and α ¼ 0° (e). The nodal line disappears in (e), and an
anticrossing band gap appears except for two special k points
along [001]. Calculated band structure along [110] using the
effective potentials of Fe (f) and Co (g) in Co0.5Fe0.5. In (a),(b),(f),
and (g), only the bands marked by frames changewith α, which are
shown in the insets.
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magnetization rotates from α ¼ 0° to 90°, this gap shrinks
until reaching a crossing point; see the inset. All the other
bands along [100] near EF do not depend on α. The
crossing point at α ¼ 90° belongs to the nodal line located
in the (010) plane withMk½010�, as shown in Figs. 2(c) and
2(d). This nodal line forms a closed ring around the Γ point
and has the lowest energy close to EF with the k vector
along h100i, indicating its largest influence on the elec-
tronic transport for the current along h100i. Since the
magnetization breaks the time-reversal symmetry, this
nodal line is protected by the mirror symmetry [38] about
a crystalline plane perpendicular to M. By rotating M, the
previous mirror symmetry is broken, and the nodal line
disappears; see Fig. 2(e). Instead, an anticrossing gap
appears except for at two special k points along [001].
WhenM is rotated to [100], another nodal line forms in the
(100) plane. Therefore, the closing and opening of the band
gap in Fig. 2(a) when rotating M can be understood based
on the required symmetry of the nodal line.
Around the crossing points, the two bands have different

topological characteristics and do not interact with each
other. Thus, the interband scattering has a relatively low
probability. When the bands interact and form an anti-
crossing, the interband scattering rate increases such that
the resistivity becomes larger [39–41]. From the quasi-
particle point of view, the long effective wavelengths and
small effective masses of the topological states have
greater probabilities of surviving the backscattering
caused by disorder than other nontopological Bloch states
[42,43]. Therefore, ρxx in Fig. 1(c) monotonically decreases
with increasing α and reaches the minimum at α ¼ 90°.
If we artificially shift EF 0.2 eV upwards such that it
approaches the crossing point, then the calculated
Δρxx=ρxx increases by 12%. This numerical test confirms
the correlation of the AMR and the M-dependent band
crossing [27]. Recently, the effect of the band topology on
spin-dependent transport has been discussed in anti-
ferromagnetic spintronics [44,45].
Along [110], the Fe bands at two special k points depend

on the magnetization direction, which are marked by the
frames with labels 1 and 2 in Fig. 2(f). At k point 1, a gap
appears at α ¼ 0° but closes at α ¼ 90°. Conversely, the
opposite α dependence occurs for the gap at k point 2.
The Co bands along [110] in Fig. 2(g) also have opposite α
dependences at two k points near EF. The competing
effects at these k pairs result in a nonmonotonic variation
in the resistivity for Jk½110� when α increases from 0° to
90°. Thus, the ordinary twofold AMR is suppressed, and
Δρ½110�xx is much smaller than Δρ½100�xx . Disorder scattering in
alloys breaks the momentum conservation, resulting in
effective band broadening; therefore, the special k points
can affect the electrical resistivity, although they are not
located precisely at the Fermi energy. Such band analysis is
applicable in explanation of all the angular dependence
shown in Fig. 1 [27].

The crossing points can be shifted up or down by varying
the Co concentration x. When the crossing points move
closer to EF, their contribution to ρxx increases. For
example, the band crossing in the Fe band along [100]
gradually shifts down towards EF with increasing x [27];
therefore, the AMR along [100] in Fig. 1(e) is more
pronounced in the alloys than that in pure Fe. The
calculated Co bands do not show significant variation
for x up to 1, and the pure Co has a very small AMR,
indicating that the band changes without gap closing and
opening have little effect on the AMR.
We shall distinguish underlying physics for the quan-

tities depending on the SOI-mediated band structure. The
anomalous Hall effect results from Berry curvature at
anticrossing bands, which contributes to the anomalous
velocity [6,8]. For Gilbert damping [26,46–48] and
magnetic inertia [49,50], the SOI lifts bands across
Fermi energy back and forth with rotating magnetization
as described by the breathing Fermi surface model [51].
The intrinsic mechanism for AMR here comes from the
symmetry protected topological states, which determines
the dependence of longitudinal transport on crystal and
magnetization directions.
Experimental measurements.—To verify the theoretical

calculation and analysis, we performed AMR measure-
ments on single-crystalline CoxFe1−x film deposited on
MgO(001) substrates by molecular beam epitaxy [27].
Figures 3(a) and 3(b) show the measured resistivity of
the Co0.5Fe0.5 film for Jk½100� and Jk½110�, respectively, as
a function of the external magnetic field, which is applied
along the three principal axes. At a sufficiently large field,
the measured ρxx linearly decreases with increasing fieldH,
and this decrease can be attributed to the field-induced
suppression of electron-magnon scattering [52].
We then performed transport measurements along [100]

and [110] by rotating the applied 9 T field in the xy, yz, and
xz planes, separately. As shown in Fig. 3(c), a strong
twofold symmetry of ρxx is seen as a function of α and γ for
Jk½100�, while a weak fourfold symmetry appears for the β
scan. In contrast, for Jk½110�, as shown in Fig. 3(d), a strong
twofold symmetry occurs in the β and γ scans, and a weak
fourfold symmetry is obtained when varying α.
We then measured the MR under the field along

an arbitrary direction by rotating the sample. The
plots of the measured three-dimensional relative AMR,
½ρxxðHÞ − ρz�=ρz, are shown in Figs. 3(e) and 3(f). The
angular dependence shows a dumbbell shape for Jk½100�,
which is expected for the AMR in most ferromagnetic
materials. Nevertheless, the resistivity for Jk½110� exhibits
a donut shape that has never been previously reported
in literature and confirms the calculated relationship
ρx ≈ ρy > ρz. Note that the different angular-dependent
AMRs in Fig. 3 are obtained with the same sample,
indicating that the current-orientation effect arises from
the electronic structure due to the anisotropic crystal field.
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The angular dependences of the resistivity measured in the
experiment fully agree with the calculated results in Fig. 1.
Despite of the significant variation of ρxx with temperature
and sample thickness, the quantitative agreement in the
experimental and calculated Δρxx further confirms the
predicted intrinsic nature [27]. At very small thickness,
the emergence of interfacial spin-orbit field [16] may have
additional effect on AMR, which is beyond the scope of
this work.
We further developed our experiment to simultaneously

measure the longitudinal and transverse resistivity under
an arbitrary current orientation, as schematically shown
in Fig. 4(a). The single-crystal CoxFe1−x films deposited
on MgO(001) substrates were patterned into 300 μm×
100 μm Hall bars with continuously varying current
directions. For x ¼ 0.65, the experimental ρxx and ρxy
are plotted in Figs. 4(b) and 4(c), which exhibit a reciprocal
relationship. For Jk½010�, the largest variation in longi-
tudinal resistivity Δρxx is large when rotating H, and the
corresponding variation in transverse resistivity Δρxy is
small. The opposite relationship of their amplitudes is
found for Jk½110�.
The measured AMR ratios defined by Δρxx=minðρxxÞ

and Δρxy with different Co concentrations are plotted in
Figs. 4(d) and 4(e), respectively, both as a function of
current orientation. Here, again, a reciprocal relationship
between Δρxx and Δρxy is unambiguously demonstrated: at

a given θ where Δρxy has its maximum amplitude,Δρxx has
its minimum value, and vice versa. This reciprocal relation-
ship is analytically reproduced [27] by the phenomeno-
logical expansion based on symmetry [53].
The AMR ratio exhibits a strong Co concentration

dependence. At small x, the AMR ratio is nearly indepen-
dent of the current direction θ, but for x > 0.25, a giant
difference between the maximum at θ ¼ 45° and 135° and
the minimum at θ ¼ 0° and 180° is observed. To quanti-
tatively elucidate the concentration dependence, we
plot Δρxx and Δρxy as a function of x in Fig. 4(f). For
the current along h100i, Δρxx increases with increasing x
up to 0.38 and slightly decreases for larger x. In contrast,

Δρh110ixx has a relatively small amplitude. This current-
orientation dependence and concentration dependence of
Δρxx are both in very good agreement with the theoretical
calculation in Fig. 1(e) except for the small bump at
x ¼ 0.13 in the red curves. This bump may be attributed
to the inhomogeneity in the alloy samples at small x while
homogeneous mixing is assumed in calculation. Moreover,

the ratio between the experimental Δρh100ixx and Δρh110ixx

FIG. 3. Experimental resistivity along [100] (a) and [110] (b) of
a 10-nm-thick Co0.5Fe0.5 sample measured under a magnetic field
along principal axes x, y, and z. The x axis is always defined as
being along the current direction. Measured resistivity with
rotating magnetization in the xy, yz, and xz planes under the
application of a 9 T field with Jk½100� (c) and Jk½110� (d). The
angles α, β, and γ are defined in Fig. 1(b). Three-dimensional
plots of the MR for the current along [100] (e) and [110] (f).

FIG. 4. (a) Schematic illustration of the device. The angle θ
defines the current orientation direction with respect to
CoxFe1−x½110�. (b) ρxx and (c) ρxy measured on a 10-nm-thick
Co0.65Fe0.35 alloy as a function of magnetic field direction
for current along [110] and [010]. Current-orientation-
dependent AMR ratio (d) and Δρxy (e) for different Co concen-
trations x. (f) The current-orientation-dependent resistivity
changes as a function of x. Inset: concentration-dependent ratios

Δρh100ixx =Δρh110ixx (blue) and Δρh110ixy =Δρh100ixy (red).
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monotonically increases with x and is as large as 42
at x ¼ 0.65, as shown in the inset of Fig. 4(f). Such
a large anisotropic dependence on the current orienta-
tion has never been previously reported for the AMR.

Following the reciprocal relation, Δρh110ixy =Δρh100ixy has the
same dependence on x.
Conclusions.—We have calculated the AMR in

single-crystal CoxFe1−x alloys using a first-principles trans-
port formalism. Our band structure analysis unambiguously
identifies an intrinsic contribution to the AMR: the energy
band crossing depends on the magnetization direction with
spin-orbit coupling. The predicted properties of the AMR
in CoxFe1−x alloys, including its dependence on the current
orientation and alloy concentration, are well confirmed by
our transport experiments on single-crystal samples.
The simultaneously measured longitudinal and transverse
resistivities in the experiment exhibit a reciprocal relation-
ship along high-symmetry crystal axes, which is repro-
duced by a phenomenological model.
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