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Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range
phase coherence. In conventional superconductors, the two quantum phenomena generally take place
simultaneously, while in the underdoped high- T, cuprate superconductors, the electron pairing occurs at
higher temperature than the long-range phase coherence. Recently, whether electron pairing is also prior to
long-range phase coherence in single-layer FeSe film on SrTiO; substrate is under debate. Here, by
measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap
behavior below T, ~ 60 K in two kinds of layered FeSe-based superconductors with quasi2D nature. In the
pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which
indicates that the observed pseudogap behavior is related to superconducting fluctuations. These works
confirm that strong phase fluctuation is an important character in the 2D iron-based superconductors as
widely observed in high-T', cuprate superconductors.
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Phase fluctuation is an important character for high-7'.
superconductivity [1] and determines the condensation of
Cooper pairs. In conventional Bardeen-Cooper-Schrieffer
superconductors, the superfluid density is so large that the
pairing and condensation of Cooper pairs always happen
simultaneously, and the superconducting transition temper-
ature (7'.) is determined by the pairing temperature (7',).
However, in the underdoped high-T'. cuprate superconduc-
tors, which were treated as a doped Mott insulator [2], the
famous “Uemura relation” indicates a close correlation
between the superfluid density and 7, [3], suggesting an
important role of phase fluctuation in the determination of
T, [1]. Previous studies also observed significant super-
conducting fluctuations above T, supporting a preformed
pairing scenario [4-7]. In contrast, the signature of pre-
formed pairing in another high-7,. family, iron-based
superconductors, remains elusive [8—13]. The discovery
of large pairing gap in single-layer FeSe film on SrTiO,
substrate sheds light on this issue [14]. The interface as a
possible origin to enhance superconducting pairing in
the single-layer FeSe film on SrTiO; has been widely
discussed [15-21]. In addition, the angle-resolved photo-
emission spectroscopy experiments revealed that the clos-
ing temperature of the pairing gap in single-layer FeSe film
is up to 65 K [22,23] while the zero-resistance transition
temperature (7',y) determined by transport measurement is
mostly below 40 K [24-27]. A natural explanation of such
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phenomenon is related to the preformed pairing analogous
to the case in underdoped cuprate superconductors.

Very recently, organic ion intercalated FeSe super-
conductors (CTA),FeSe [28] and (TBA), FeSe [29] with
T.y ~ 43 K have been synthesized. As shown in Fig. 1(a),
the charge from organic ion tetrabutyl ammonium (TBA™)
is transferred to FeSe layers, which is important to achieve
high-T', superconductivity in FeSe layer [17,22,25,30]. The
distance between adjacent FeSe layers is enlarged from
~5.5 A in pristine FeSe to ~15.5 A in (TBA),FeSe due to
the intercalation of TBA™. The intercalation of organic ion
makes the (TBA),FeSe superconductor two dimensional
(2D). In these 2D FeSe-based superconductors, we unam-
biguously reveal an intrinsic pseudogap behavior below
T, ~60 K by measuring Knight shift and nuclear spin-
lattice relaxation rate. In addition, a weak 2D diamagnetic
signal and a remarkable Nernst effect are also observed in
the pseudogap regime. These results definitely verify the
preformed Cooper pairs in the 2D FeSe-based super-
conductors, which should be the same scenario for the
single-layer FeSe film.

Nuclear magnetic resonance (NMR) is a bulk-sensitive
local probe to measure spin susceptibility (y,). When the
electrons are bound into Cooper pairs with a spin-singlet
pairing, the local spin susceptibility will diminish below
pairing temperature. Even if the long-range coherence
among Cooper pairs is lost due to strong phase fluctuations,
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FIG. 1. Crystal structure and superconducting properties of (TBA) FeSe. (a) The crystal structure of pristine FeSe with c-axis lattice
constant dy ~ 5.5 A and the intercalated (TBA) FeSe with d; ~ 15.5 A. (b) Tunneling spectrum taken on a cleaved surface of
(TBA),FeSe at 5 K reveals the appearance of a superconducting gap. Pronounced superconducting coherence peaks appear at
+16 meV. Inset: Atomically flat STM image for (TBA), FeSe with a bias voltage of Vy;,c = 1 V and tunneling current of 7, = 220 pA.
(c) Temperature dependence of in-plane resistance under different magnetic fields applied along c axis. The 79" is determined by the
intersection of the linear extrapolation of normal-state resistance R,, and the sharp superconducting transition, and the T is determined
by using the one percent normal state resistance criterion. The fan-shaped broadening of resistive transition under magnetic fields
indicates a strong 2D characteristic. (d) Temperature dependence of anisotropic magnetic susceptibility measured in field-cooling and
zero-field-cooling modes under magnetic field of 5 Oe applied along in plane (blue) and out of plane (red), respectively. The significant
difference of shielding fraction between two orientations, usually up to dozens of times, supports a strong 2D characteristic.
(e) Temperature dependent FWHM of 7’Se NMR spectra under different external magnetic fields. The temperature indicated by dashed

line is defined as the superconducting transition temperature (7'.) in the H-T phase diagram of Fig. 4.

a drop in the local spin susceptibility is still expected [31].
In NMR measurements, both the Knight shift (K) and the
nuclear spin-lattice relaxation rate (1/7) are related to the
spin susceptibility. Usually, the Knight shift is related to
the uniform spin susceptibility with K, = Ay, + Kow»
where K4, is the orbital contribution and is always
temperature independent, and A is the hyperfine coupling
tensor between nuclear and electronic spins. The nuclear
spin-lattice relaxation rate (1/7') is related to dynamic spin
susceptibility with 1/T,T ~ 2,734, (q)*(x"(q. »)/w),
where " (g, w) is the g-dependent dynamic spin suscep-
tibility and A | (¢) is the transverse hyperfine form factor
(see Supplemental Material [32], Section I, for more
details). Usually, 1/7,T = 1/T¢"T + 1/T5FT, in which
the first term is from quasiparticles and the second is from
additional spin fluctuations. In a Fermi liquid picture,
which ignores the g-dependent spin fluctuations, both
of the quantities keep a simple Korringa relation with
1/T\T ~ K> ~ N(Eg)? [80], where N(Ep) is the density of

state at Fermi level. In this sense, both Knight shift and
nuclear spin-lattice relaxation rate are practical to identify
pseudogap phenomenon [81] that leads to a suppression
of N(Ep).

As shown in Fig. 2(a), the temperature-dependent Knight
shift of 7’Se nuclei shows a clear deviation from the high-
temperature behavior below 60 K, which is more evident in
the differential curve. If superconductivity is considered as
the only active electronic instability at low temperature,
such deviation must be related to superconducting pairing.
As shown in Fig. S6(a) in the Supplemental Material [32], a
clear shift of NMR spectrum to low frequency without any
change of profile indicates an intrinsic suppression of the
uniform spin susceptibility below 60 K. A similar deviation
from high-temperature behavior is also observed in the
temperature-dependent 1/7|7T [Fig. 2(b)], which is in
agreement with the Knight shift results. Moreover, the
temperature-dependent stretching exponent of 7' fitting
shown in Fig. S6(b) in the Supplemental Material [32]
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FIG. 2. Evidence for preformed Cooper pairs above T in (TBA), FeSe. (a) Temperature dependence of Knight shift K (upper panel)
and its first derivative (lower panel). (b) Temperature dependence of the spin-lattice relaxation rate divided by temperature 1/7,T (upper
panel) and its first derivative (lower panel). The external magnetic field of 120 kOe in (a) and (b) was applied within the ab plane. (c) The
high-field magnetic susceptibility y,, and y, measured in field-cooling mode with the magnetic field of 70 kOe applied in plane (green)
and out of plane (orange), respectively. The black solid lines are the extrapolation fitting curves of high-temperature behavior. The arrow
indicates the onset of diamagnetism. (d) Temperature dependence of Nernst effect under a magnetic field of 135 kOe applied along ¢
axis. A vortex-related Nernst signal is observed well above T',. The arrow shows the onset of the vortex-related Nernst effect at ~65 K.
It should be noted that the T, determined by Nernst effect is slightly higher than other probes, which suggests that the Nernst effect is

more sensitive to detecting superconducting fluctuation.

verifies a homogeneous spin dynamics in NMR timescale
above T,. Therefore, the present NMR results support
an intrinsic pseudogap behavior with the characteristic
temperature 7', ~ 60 K. It should be emphasized that the
similar temperature-dependent behavior between Knight
shift and 1/7T, T also confirms that the observed pseudogap
behavior is from quasiparticles instead of spin fluctuations.
As shown in Fig. S3(a) in the Supplemental Material [32],
the in-plane conductance exhibits a clear enhancement
below 60 K, which is consistent with a fluctuating super-
conductivity above T . In addition, it should be pointed
out that the observed pseudogap behavior in NMR mea-
surement is independent of field orientation or strength
(refer to Supplemental Material [32], Section I, for more
details). These results are consistent with a preformed
pairing scenario with considerable pairing gap suggested
by STM measurement shown in Fig. 1(b).

However, whether the pseudogap behavior in NMR
measurements can be unambiguously ascribed to the pre-
formed pairing is not straightforward if there are other
electronic instabilities such as charge or spin density wave.
Here, in order to further clarify the nature of the pseudogap
behavior below T, the bulk magnetization was measured
with external magnetic field applied in plane and out of
plane. Usually, the weak diamagnetic signal due to the
preformed pairing can be detected by the bulk magnetiza-
tion measurement [82]. As shown in Fig. 2(c), the high-
field magnetization shows a weak diamagnetic signal
well above T, under magnetic field applied along c axis.

The onset temperature of the weak diamagnetic signal
is around T, ~ 60 K, perfectly consistent with the NMR
results. It strongly confirms that a 2D superconducting
fluctuation emerges below 7', being similar to the single-
layer FeSe film [83]. It is well known that the Nernst effect
is another quite sensitive probe for superconducting fluc-
tuations [5]. As shown in Fig. 2(d), a remarkable Nernst
signal is observed above T, under an external magnetic
field of 135 kOe applied along c axis. At higher tem-
perature, the Nernst signal is very small and almost
temperature independent. Below about 65 K, the Nernst
signal shows a clear increase and then reaches a maximum
around 40 K. Below 40 K, the Nernst signal continuously
decreases. Such temperature dependence of Nernst effect
was widely observed in the underdoped cuprate super-
conductors, and the Nernst signal well above T is usually
ascribed to the free vortex contribution (common Gaussian
fluctuation only appears around 7 () [5]. The Nernst effect
further supports a persistent superconducting fluctua-
tion above T, consistent with the results of NMR and
diamagnetism. In addition, the above results of anisotropic
diamagnetism and Nernst effect also rule out the possible
origin of band structure [84] or nematicity [85] to explain
the NMR results.

As shown in Figs. 3(a) and 3(b), the anisotropy of
resistivity between out of plane and in plane was measured.
Compared to bulk FeSe, the value of anisotropy is
enhanced by about 5 orders of magnitude, suggesting an
intercalation-induced dimensional crossover from 3D to
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FIG. 3.

(A)

Two-dimensional electronic properties of (TBA), FeSe. (a) Temperature dependence of in-plane and out-of-plane resistivity.

(b) The anisotropy of resistivity (p./p,p) for (TBA), FeSe and pristine FeSe. The data of FeSe is adopted from Ref. [90]. (c) V (1) curves
at various temperatures plotted in a logarithmic scale. The numbers provide the measured temperature for each curve. The short black
lines are fits of the data across the . The two long black lines correspond to V ~ I and V ~ I* behavior, respectively. The temperature
for V ~ I’ behavior is defined as Tgyy ~ 44 K. (d) Temperature dependence of the power-law exponent a as deduced from the fits
shown in (c). (¢) R-T dependence for the (TBA), FeSe single crystal (I = 500 uA) plotted in a [d1In(R)/dT]~%? scale. The solid line
shows the fitting to the Halprin-Nelson formula R(T) = Ryexp[—b/(T — Tgkr)'/?] with Tggr ~ 44.7 K.

2D. Considering such highly 2D electronic structure, a
natural explanation for the observed pseudogap behavior in
these layered FeSe-based superconductors is related to
strong phase fluctuations in 2D limit [24] in which the
spontaneous topological excitations (vortex) due to strong
phase fluctuations destroy the zero-resistance state below
the 2D superconducting pairing temperature (727). Based
on the Berezinskii-Kosterlitz-Thouless (BKT) theory, the
zero-resistance state only emerges when the vortex and
antivortex are bound into pairs below a so-called BKT
transition temperature (7pgr) [86,87]. Such topological
transition due to the unbinding of vortex-antivortex pairs
manifests a jump of the power-law exponent in the current-
voltage (I-V) characteristic curves and a disappearance
of Ohmic resistance obeying the Halperin-Nelson scaling
law [88], which are important manifestations of 2D super-
conductivity [89]. To further verify the nature of zero-
resistance transition and pseudogap phenomenon, we
carried out the measurement of temperature-dependent
I-V curves across T.y. As shown in Fig. 3(c), a power-
law transition with V ~ [* can be identified during the
zero-resistance transition. We extracted the temperature
dependence of the power-law exponent @, which was
deduced by fitting the /-V curves, as shown in Fig. 3(d).
At T =44 K, the exponent a continuously approaches
to the value of 3, which can be used to define a supposed
BKT transition [89]. Moreover, the temperature-dependent
resistance R(7) follows a typical BKT-like behavior
with R(T) = Ry exp[—b/(T — Tgkr)'/?] in the temperature

range close to Tgit, Where R and b are material dependent
parameters [88]. As shown in Fig. 3(e), the extracted value
of Tggr from the measured R(T) curve is about 44.7 K,
which is in agreement with the /-V results. Both anisotro-
pic transport and /-V curves evidently support a 2D-like
(or BKT-like) nature in these layered FeSe-based super-
conductors, which hints at an important role for phase
fluctuation.

Up to now, all experimental results obtained by different
techniques support a pseudogap behavior due to the pre-
formed pairing below 7', ~ 60 K and a highly anisotropic
superconductivity below T. ~43 K in (TBA), FeSe.
A summarized H-T phase diagram is shown in Fig. 4.
Here, we would like to emphasize that vortex physics might
be more sophisticated if considering a role of quenched
disorder on the vortex dynamics, but it is not the focus in
the present study. We leave this issue of detailed vortex
physics to future work. The similar pseudogap behavior is
also observed in another layered FeSe-based superconduc-
tor (CTA) FeSe (refer to Supplemental Material [32],
Section II, for more details). These results confirm that
such a pseudogap behavior is intrinsic for the layered
FeSe-based superconductors. In addition, STM measure-
ment indicates that the local superconducting gap is about
16 meV in these layered FeSe-based superconductors [see
Fig. 1(b) for (TBA), FeSe and Fig. S10 in Supplemental
Material [32], Section II, for (CTA),FeSe], which is
comparable to that of the single-layer FeSe film with the
gap value varying from 13 to 20 meV (see Fig. S11 in
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FIG. 4. Summarized H-T phase diagram for (TBA) FeSe. The
external magnetic field is parallel to the c axis. T,y stands for
zero-resistance transition temperature, which is also consistent
with the T, defined by NMR measurement under magnetic field.
T, stands for the superconducting temperature defined by the
onset temperature of NMR line broadening and the first derivative
of resistance data. T, stands for the onset temperature of
pseudogap behavior. Resistivity, magnetization, and NMR mea-
surements give the same 7', of about 60 K, while the Nernst effect
gives a slightly higher T, of about 65 K. It suggests that Nernst
effect is more sensitive than other probes to detecting super-
conducting fluctuations. In the vortex solid or vortex glass state,
the resistivity becomes zero with highly anisotropic diamagnet-
ism. In the vortex liquid state, the resistivity is no longer zero but
there is still anisotropic diamagnetic signal. Such phase diagram
for vortex is similar to that of high-T', cuprate superconductors
[35] in which the vortex physics is strongly affected by the 2D
superconducting fluctuations. Above T, a remarkable pseudogap
phenomenon appears up to 7',.

Section III of the Supplemental Material [32]). Therefore,
the much higher pairing temperature (~65 K) compared
to zero-resistance transition temperature (< 40 K) in the
single-layer FeSe film might be also ascribed to the same
preformed pairing scenario. These works indicate that
strong phase fluctuation is an important character in 2D
iron-based superconductors as widely observed in high-7',
cuprate superconductors. How to understand the under-
lying physics behind preformed pairing is relevant to
high-T, mechanism and brings a challenge to theory. To
summarize, our work not only reveals the preformed
Cooper pairs but also suggests a possible enhancement
of pairing strength by dimensional crossover from 3D
to 2D.
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