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Monolayer WTe2, a centrosymmetric transition metal dichacogenide, has recently been established as a
quantum spin Hall insulator and found superconducting upon gating. Here we study the pairing symmetry
and topological nature of superconducting WTe2 with a microscopic model at mean-field level.
Surprisingly, we find that the spin-triplet phases in our phase diagram all host Majorana modes localized
on two opposite corners. Even when the conventional pairing is favored, we find that an intermediate in-
plane magnetic field exceeding the Pauli limit stabilizes an unconventional equal-spin pairing aligning with
the field, which also hosts Majorana corner modes. Motivated by our findings, we obtain a recipe for two-
dimensional superconductors featuring “higher-order topology” from the boundary perspective. Generally,
a superconducting inversion-symmetric quantum spin Hall material whose normal-state Fermi surface is
away from high-symmetry points, such as gated monolayer WTe2, hosts Majorana corner modes if the
superconductivity is parity-odd. We further point out that this higher-order phase is an inversion-protected
topological crystalline superconductor and study the bulk-boundary correspondence. Finally, we discuss
possible experiments for probing the Majorana corner modes. Our findings suggest superconducting
monolayer WTe2 is a playground for higher-order topological superconductivity and possibly the first
material realization for inversion-protected Majorana corner modes without utilizing proximity effect.
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Introduction.—Extensive experimental and theoretical
effort has been devoted to transition metal dichalcogenides,
a family of materials with the chemical formula MX2

(M ¼ transition metal, X ¼ S, Se, Te) known to host a rich
variety of intriguing ground states such as topological
insulators and semimetals [1–6], charge density waves
[7–13], and various types of possibly unconventional
superconductivity [13–21]. Moreover, tuning among these
phases is possible by widely accessible experimental
knobs—for example, changing the thickness, pressure
[10,22–25], electrostatic gating [13,16,26], and recently
even the twist angle between monolayers [27,28]. Recently,
a centrosymmetric member of the transition metal dichal-
cogenides family, monolayer WTe2, has been established
[1–4,29,30] as a quantum spin Hall (QSH) insulator
[31,32]. Remarkably, in this same material, super-
conductivity at temperatures around 1 K was soon after
reported under tunable electrostatic gating [20,21]. We are
thus motivated to understand the nature of this super-
conductivity given the prevailing expectation that inducing
superconductivity in already topological materials is a
promising route for achieving topological superconductors.
Theoretically, a known necessary condition for two-

dimensional (2D) time-reversal topological superconduc-
tors requires negative pairing potentials on an odd number
of Fermi surfaces that enclose time-reversal invariant
momenta (TRIMs) [33,34]. The presence of the inversion
symmetry, however, enforces twofold degeneracy of the
Fermi surfaces and thus sets up a “no-go” theorem that

precludes such superconductors from being topological.
Nonetheless, recent developments suggest that inversion
can unexpectedly enrich the topological structure of a
system [35–37] and enable new topological crystalline
superconductors (TCsc) that are completely beyond the
previous paradigm [33,34]. In particular, there exists a type
of inversion-protected TCsc in dimension d that has no
Majorana boundary modes in d − 1 dimension yet is still
topologically distinct from a trivial superconductor [36,37].
This suggests the possibility that such an inversion-
protected TCsc belongs to the so-called “higher order
topological phases” [38–48] and may host Majorana
boundary modes in d − 2 or lower dimensions.
Here, we propose a surprisingly simple recipe for this

exotic inversion-protected TCsc: (1) the normal state is an
inversion-symmetric QSH material with Fermi pockets
away from TRIMs, and (2) the superconductivity is
parity-odd. Given that gated monolayer WTe2 readily
satisfies criteria (1), unconventional superconductivity with
odd parity becomes the last piece of the puzzle for an
inversion-protected TCsc that could host exotic Majorana
corner modes.
In fact, in WTe2 there is ample reason to suspect that

electron correlations might be strong, and odd-parity
superconductivity is therefore plausible. First is the fact
that the reported superconductivity [20,21] occurs at a
low carrier density, while ab initio calculations do not
reproduce the low-energy normal state band structure
found by angle-resolved photoemission spectroscopy
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(ARPES) [2] and STM [2] studies unless one goes
beyond the generalized-gradient approximation [1,2,49].
Moreover, the reported in-plane upper critical field Hk

c2
is 2.5 to 4.5 times higher than the Pauli limit Hp [20,21].
While an Hk

c2 higher than the Bardeen-Cooper-Schrieffer
theory prediction in centrosymmetric materials can occur
when the normal state has a high spin-orbit scattering rate
[50] or when the g factor deviates from 2 [20], another
possible origin is a spin-triplet (and thus odd-parity) paired
state with spin aligning in the field direction.
In this work, we report the pairing symmetry and

topological nature of the newly discovered super-
conductivity in gated monolayer WTe2. First, we solve
the linearized gap equations to obtain a superconducting
phase diagram in terms of microscopic interactions. By
investigating the boundary modes in different phases, we
find Majorana corner modes in odd-parity phases and,
surprisingly, also in the field-induced equal-spin phase
emerging upon the suppression of conventional pairings.
Then, we obtain a general recipe from the boundary
perspective for achieving such 2D superconductivity with
corner Majoranas. Finally, we point out that such higher-
order phase is an inversion-protected topological crystalline
superconductor that can be characterized by a bulk
invariant we propose, and we address the bulk-boundary
correspondence. Our recipe provides a new route toward
materializing a novel topological phase of matter, as well as
realizing Majorana zero modes, which is the first step for
topological quantum computation.
Model.—Monolayer WTe2 is stable in the 1T 0 structure,

which is a buckled honeycomb lattice that is distorted into a
rectangular lattice consisting of in-plane and buckled zigzag
chains of W and Te atoms, respectively [see Fig. 1(a)].

This lattice is nonsymmorphic, with a twofold screw rotation
C2x and a glide-mirror symmetryMx [51], each with a half-
unit-cell translation along the chain direction x̂. The lattice
also has inversion symmetry I0, resulting from the product of
the two symmetries.
To study the dominant pairing channels in gated mono-

layer WTe2, we start from a minimal tight-binding model
previously obtained by other authors from a low-energy fit
to ab initio calculations [52–54]. The Hamiltonian is
written in a basis of spin s and four Wannier orbitals.
These Wannier orbitals are labeled by the sublattice σ ¼ A,
B they are on and by whether they transform as dx2−y2or px
orbitals (l ¼ d, p). The l ¼ d, p orbitals are derived from
W and Te atoms, respectively. Each degree of freedom is
denoted by the corresponding Pauli matrices: ŝ, σ̂, and l̂,
respectively. The full normal-state Hamiltonian is

H0ðkÞ ¼ ŝ0 ⊗ ½ĥ0ðkÞ − μ� þ Vsocŝzσ̂zl̂y: ð1Þ

Here, the sz-preserving intrinsic spin-orbit coupling Vsoc
[53] is the lowest order term in k that obeys time-reversal,
screw-rotation, and glide-mirror symmetries, while the
spin-degenerate part ĥ0ðkÞ [52,53] is a 4 × 4 matrix in
the basis of σ̂ ⊗ l̂ [Supplemental Material (SM) [56],
Sec. I]. As a zeroth-order approximation to the gating
effects, we set the overall chemical potential μ ¼ 0.5. The
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FIG. 1. Schematics for (a) the top view of the lattice of
1T 0-WTe2, and (b) the microscopic interactions considered in
Eq. (2). In (a), the filled orange circles represent the W atoms,
which locate on the z ¼ 0 plane. The filled and hollow blue
circles (gray triangles) represent the Te atoms above and below
the z ¼ 0 plane, which are (are not) associated with the Wannier
orbital centers in the low-energy tight-binding description. The
gray rectangle indicates a unit cell, the horizontal and vertical
black lines show the screw-rotation axis and the glide-mirror
plane, respectively, and the black cross marks the inversion
center. In (b), we omit the Te atoms (gray triangles) that do not
contribute to Wannier orbitals.

(a)

(c) (d)

(b)

FIG. 2. (a) The two Fermi pockets of H0 at chemical potential
μ ¼ 0.5. ax and ay are the lattice constants of a unit cell. (b) Phase
diagram obtained from solving the linearized gap equation. The
blue stars mark the representative points we study for even- and
odd-parity pairings in the rest of the Letter. The spatial configu-
rations of the dominant components in the self-consistent
solutions with (c) Ag and (d) Bu symmetries, computed on a
system with 12 by 12 unit cells. Δi ≡ jΔα0β0 ðr; r0Þj for the bond
with the ith largest gap magnitude. Δ1=2 in (c) denotes the
magnitude for on-site gaps. Au and B0

u have similar configura-
tions to that of Bu despite different spin structures.
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resulting two electron pockets are centered along the Γ − X
line [Fig. 2(a)], as observed by ARPES [2].
We consider short-ranged density-density interactions

that preserve the lattice symmetries up to nearest-neighbor
unit cells [Fig. 1(b)]:

Hint ¼
X

rr0

X

αβα0β0
Γα0β0;βαðr; r0Þc†rα0c†r0β0cr0βcrα

¼
X

r

Uln↑σlðrÞn↓σlðrÞ þ Vll0
a nσlðrÞnσ0l0 ðrþ δaÞ; ð2Þ

where σð0Þ, lð0Þ, and a ¼ 1, 2 indices are summed over,
nsσlðrÞ is the density with spin s and orbital l locating
at sublattice σ in the unit cell centered at r, and
nσlðrÞ ¼

P
s nsσlðrÞ. Here Ul denotes the on-site inter-

actions for orbital l, Vll0
1 and Vll0

2 denote the nearest- and
next-nearest-neighbor interactions, respectively, on the
zigzag chains with intraorbital (interorbital) characters
for l0 ¼ lðl̄Þ [Fig. 1(b)], and δa denotes corresponding
lattice vectors (SM Sec. I). For simplicity, in the following
we consider the case where Ul ¼ U, and Vll0

1 ¼ Vll0
2 ¼ V.

Method and phase diagram.—To analyze the dominant
pairing channel for given interactions U and V, we
first classify the symmetries of possible pairing gaps.
The normal state preserves two nonsymmorphic
symmetries C2x ¼ eikxax=2ð−iŝx ⊗ σ̂x ⊗ l̂0Þ, ky → −ky,
and Mx ¼ eikxax=2ð−iŝx ⊗ σ̂0 ⊗ l̂zÞ, kx → −kx. The
mean-field Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG
k ¼

�H0ðkÞ ΔðkÞ
Δ†ðkÞ −T†H†

0ðkÞT

�
ð3Þ

therefore obeys gBdGk HBdG
k ðgBdGk Þ† ¼ HBdG

gk , where T ¼
isyK, k → −k is the time-reversal operation with K the
complex conjugation, and gBdGk ¼ diag½gk; ηggk� describes
how the two symmetries g ¼ C2x;Mx act on the Nambu
basis ½ck↑; ck↓; c†k↓;−c†k↑�. Thus, the pairing gaps transform
as gkΔkg

†
k ¼ ηgΔk, and we can classify all possible pairing

gaps into four irreducible representations Ag, Bg, Au, and
Bu according to their parities ηg ¼ �1 under the symmetry
transformations g (see Table I).
Next, we determine which irreducible representation has

the highest Tc by solving the linearized gap equation [57]

Δα0β0 ðk0Þ¼−
P

k00kΓα0β0;β00α00 ðk0;k00Þ×χβ00α00;αβðk00;k;TÞΔαβðkÞ,
where Greek indices contain all the internal indices ðs; σ; lÞ,
and repeated indices are summed over. Here, the interaction
Γα0β0;βαðk0; kÞ is the Fourier transform of Γα0β0;βαðr; r0Þ in
Eq. (2), and χβ00α00;αβðk00; k; TÞ is the noninteracting static
pairing susceptibility at temperature T. Solving the linear-
ized gap equation amounts to solving the eigenvalue
problem of the effective interaction projected onto the
Fermi surface Γ̃ðp0; pÞ ¼ −

ffiffiffiffi
P

p
p0Γðp0; pÞ

ffiffiffiffi
P

p
p, where pð0Þ is

the incoming (outgoing) momentum on the Fermi surface,
and Pp¼ðPn¼1;2 jp;nihp;njÞ⊗ ðPn¼1;2 j−p;nih−p;njÞ
projects an electron-pair state to the two degenerate non-
interacting bands n on the Fermi surface at momenta p and
−p. The eigenvector ψðpÞ of Ṽ with the most negative
eigenvalue λ is the solution to the linearized gap equation
with the highest Tc ∝ expð−1=jλjÞ. We can then determine
how ψðpÞ behaves under symmetries C2x and Mx under
different interactions and obtain the superconducting phase
diagram of H ¼ H0 þHint.
In Fig. 2(b), we present this phase diagram as a function

of U and V. We find that while on-site attractions favor the
even-parity “trivial” representation Ag as expected, the odd-
parity representations Au and Bð0Þ

u (the superscript denotes
different pair spin textures) dominate over a large portion of
the phase diagram where the nearest-neighbor attraction V
dominates. In particular, the degenerate Au and B0

u gaps at
repulsive U are equal-spin triplets in the out-of-plane
direction (j↑↑ ∓ ↓↓i), and the Bu gap at attractive U
has sz ¼ 0 (j↑↓þ ↓↑i). This SUð2Þ-symmetry breaking is
due to the intrinsic spin-orbit coupling Vsoc.
We can understand qualitatively the competition

between even- and odd-parity pairings from their
real-space gap structures. To this end, we write down
the mean-field Hamiltonian in Eq. (3) in real space
and solve the self-consistency equations Δα0β0 ðr; r0Þ ¼
−
P

αβ Γα0β0;βαðr; r0Þhcr0βcrαi by iteration. We consider the
short-ranged interactions Hint and show results for repre-
sentative points for even- and odd-parity pairings [see blue
stars in Fig. 2(b)]. We find the dominant component in the
even-parity Ag gap to be the on-site pairings as expected,
while the dominant contribution to the odd-parity Bu gap
comes from the next-nearest-neighbor d-orbital pairing
along the chains in the x̂ direction [see the bonds with
Δ1 in Fig. 2(c),(d)]. It is then clear that attractions Ud and
Vdd
2 in Eq. (2) are the main terms responsible for Ag and Bu

pairings, respectively. While on-site attractions Ud are
uniform in momentum space and promote even-parity
pairing, attractive Vdd

2 terms enhance scattering processes
with large momentum-transfer 2kF across the two pockets,
which promotes odd-parity pairing (SM Sec. II); hence, the
balance between even- and odd-parity pairings as shown in
the phase diagram.
Corner Majoranas in WTe2.—To understand the topo-

logical properties of these phases, we examine the boun-
dary modes of different paired states in the phase diagram.

TABLE I. The parities of the irreducible representations under
the 1T 0 lattice symmetry operations. The action of the symmetries
on crystal momentum and internal indices and the used Nambu
basis are shown in the text.

ηC2x
ηMx

Examples

Ag þ þ ŝ0 ⊗ σ̂0 ⊗ l̂0
Bg − − ŝ0 ⊗ σ̂z ⊗ l̂x
Au þ − kxŝx ⊗ σ̂0 ⊗ l̂z
Bu − þ kxŝz ⊗ σ̂0 ⊗ l̂z
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While the spin-singlet Ag phase is topologically trivial as
expected, we find that spin-triplet phases exhibit exotic
boundary modes. Specifically, in our model for super-
conducting WTe2 given by H0 and the self-consistently
obtained Bu pairing [58], we numerically demonstrate the
existence of zero-energy corner-localized states on an
open-boundary geometry (Fig. 3). We further verify that
with an increasing system size L, these corner states tend
exponentially toward zero energy (SM Sec. III), which un-
ambiguously demonstrate the existence of Majorana
Kramers pairs localized at two opposite corners. We also
find similar Majorana corner modes in the other spin-triplet
phase Au (SM Sec. III).
Even if the realistic WTe2 lies in the even-parity pairing

Ag regime in Fig. 2(b), we find that an intermediate in-plane
magnetic field can surprisingly drive a first-order phase
transition and stabilize a new equal-spin phase B00

u [59]
aligning with the applied field near the Pauli limit
[Fig. 4(a)]. This is consistent with the in-plane critical
field exceeding the Pauli limit reported by recent experi-
ments [20,21]. Importantly, this field-induced B00

u phase
also exhibits twoMajoranas localized near opposite corners
[Fig. 4(b), (c)]. Due to the broken time-reversal symmetry,
these two corner modes are single Majoranas instead of
Majorana Kramers pairs (SM Sec. III). We therefore
emphasize that even if the superconductivity in the realistic
WTe2 belongs to the even-parity Ag representation, it is still
possible to obtain single Majorana corner modes by
applying an in-plane field.
A recipe for 2D higher-order superconductors.—We

point out that these 2D higher-order superconducting
phases can in fact be achieved by a general recipe [60].
Our studies on WTe2 suggests that corner Majoranas might
occur generically from the combination of a gated QSH
state with odd-parity superconductivity. This recipe is most
intuitive from the boundary perspective. Consider such a
QSH normal state at a doping level where it still exhibits
counterpropagating modes well-localized on the edge. In

the absence of pairing, the corresponding BdG Hamiltonian
has two electron-like and two hole-like zero-energy eigen-
states with edge-localized wave functions. When we
introduce an odd-parity pairing potential, which changes
sign in real space when projected onto opposite edges and
inevitably vanishes at the domain walls, the electron- and
hole-like edge states will mix and acquire finite energies
except at the two inversion-related points where the
projected pairing vanishes. The resulting “leftover” zero-
energy modes, whose point-like wave functions will likely
to be trapped at corners for realistic samples, therefore lead
to two Majorana Kramers pairs localized on two opposite
corners. Although the bulk-boundary correspondence is not
rigorously proven, we analytically show that corner
Majoranas naturally exist in a minimal model we construct
for superconductors built from our recipe (SM Sec. VII).
Bulk invariant perspective of the recipe.—This 2D

higher-order topological superconducting state is in fact
a type of TCsc protected by inversion symmetry. Based on
studies of various symmetry-protected topological phases
[35,37,61], we conjecture that the bulk topology in inver-
sion-protected TCsc could be inferred from the inversion
eigenvalues of occupied BdG bands at TRIMs. With these
BdG parity data, we define a symmetry indicator as the
bulk invariant for a 2D inversion-protected TCsc in the
presence of time-reversal symmetry,

κ ¼ 1

4

X

k∈TRIM

X

n

ξkn; ð4Þ

inspired by indicators proposed for 3D systems [35,37].
Here ξk;n are the parity eigenvalues of the occupied BdG

(a) (b)

FIG. 3. BdG spectrum for gated WTe2 with Bu pairing
symmetry at U ¼ −0.2, V ¼ −0.4 on a finite lattice of
32 × 32 unit cells computed by Lanczos techniques. (a) The
gapped BdG spectrum with a near-zero energy Majorana
Kramers doublet. (b) The spatial probability distribution jψ0j2
corresponding to the zero modes, demonstrating sharp corner
localization. The geometry preserves inversion but not the two
nonsymmorphic symmetries.

x10-2

s'=s

s'=--s

s′ = s
s′ = s̄

B′′uAg
Δ0
ss′

0
0 1 2 3 4 5

hx /Hp

1.5

(a) (b) (c)

FIG. 4. (a) The evolution of pairing symmetries and dominant
order-parameter magnitudes of different spin components Δ0

ss
andΔ0

ss̄ when applying an in-plane field with strength hx to the Ag
phase. We consider a representative point ðU; VÞ ¼ ð−1;−0.4Þ
[the lower blue star in Fig. 2(b)] and solve the gap equations self-
consistently with term Hfield ¼ hxŝx ⊗ σ̂0 ⊗ l̂0 added to Eq. (1).
The blue and yellow background colors represent phase Ag and
B00
u. For Ag, the opposite-spin component results from spin-singlet

pairing. For B00
u, the opposite- and equal-spin components result

from spin-triplet states j↑↓þ ↓↑i and j↑↑þ ↓↓i, respectively.
(b) The gapped BdG spectrum with zero-energy modes, and
(c) the probability distribution of the zero-energy eigenstate jψ0j2
at hx=Hp ∼ 5.3.
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bands at TRIMs k [61], and this indicator is stable to adding
trivial normal bands for restricted cases where the normal
state is half-filled. Application of this formula thus requires
extending the “normal” inversion operator I0 to Nambu
space. For odd-parity superconductors, which are defined
by superconducting gaps satisfying I0ΔkI−10 ¼ −Δk, the
operator I ¼ diagðI0;−I0Þ defines the inversion operation
for BdG Hamiltonians. For even-parity superconductors,
this inversion operator I has no minus sign in the hole part,
so κ is always zero [37]. By identifying trivial BdG parity
data as those from “atomic superconductors,” which are
constructed by placing zero-dimensional electron- or hole-
like bogoliubons at Wycoff positions, we can see that our
indicator is stable upon mod 4. This indicates that the
classification of 2D inversion-protected TCsc is Z4.
To identify which of the four states features corner

Majoranas, we relate our index κ to the well-known Z2

index ν for 2D time-reversal superconductors (SM Sec. IV):

ν ¼ κ mod 2: ð5Þ

It is thus clear that κ ¼ 0, 2 phases do not have edge
Majoranas while κ ¼ 1, 3 phases do. Nonetheless, the
κ ¼ 2 phase is topologically distinct from the trivial κ ¼ 0
phase, hinting that the former has corner Majoranas.
In fact, the phases hosting corner Majoranas in WTe2

have κ ¼ 2, which we explicitly verified using HBdG with
self-consistently obtained Δ in Fig. 2(d) (SM Sec. V). Not
only for this particular example, here we show that general
2D higher-order superconductors constructed from our
recipe have κ ¼ 2. To see this, we relate the Z4 indicator
κ for a time-reversal parity-odd BdG system to the Z2

topological index νN [62] for its normal state:

κ ¼ 2κN; νN ¼ κN: ð6Þ

Here, κN ¼ 0, 1 is the Z2 indicator defined analogously as
in Eq. (4) but for normal-state Hamiltonians [37].
Importantly, the latter relation holds for a metallic state
only when the numbers of occupied bands are all the same
at all TRIMs (SM Sec. VI). Now, we follow our recipe and
take the normal state to be a gated QSH state whose Fermi
surface does not circle any TRIM, just as gated WTe2. In
this case, Eq. (6) holds, and we have κN ¼ νN ¼ 1. Upon
introducing odd-parity pairing, the resulting superconduc-
tor therefore has κ ¼ 2.
Discussion.—For the odd-parity paired states we find in

WTe2, which we find to be inversion-protected higher-
order TCsc, we expect that the Majorana corner modes
cannot be removed without closing the bulk gap if inversion
is preserved. When the inversion symmetry is broken,
while the Majoranas are no longer protected by the 2D bulk
topology, they are still protected by the gaps on the 1D
edges. In this case, the paired state becomes the so-called
“extrinsic” higher-order topological superconductor [63].

We thus expect these Majorana corner modes can in
principle be probed by STM or transport measurements.
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Note added.—After posting this work, we became aware of
Ref. [65], which mainly discussed the formulation of
symmetry indicators for inversion-protected TCsc in any
d dimension. Their d ¼ 2 case agrees with our conjecture
in Eq. (4) for the cases we focus on.
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