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Synchronization is a widespread phenomenon observed in physical, biological, and social networks,
which persists even under the influence of strong noise. Previous research on oscillators subject to common
noise has shown that noise can actually facilitate synchronization, as correlations in the dynamics can be
inherited from the noise itself. However, in many spatially distributed networks, such as the mammalian
circadian system, the noise that different oscillators experience can be effectively uncorrelated. Here, we
show that uncorrelated noise can in fact enhance synchronization when the oscillators are coupled.
Strikingly, our analysis also shows that uncorrelated noise can be more effective than common noise in
enhancing synchronization. We first establish these results theoretically for phase and phase-amplitude
oscillators subject to either or both additive and multiplicative noise. We then confirm the predictions
through experiments on coupled electrochemical oscillators. Our findings suggest that uncorrelated noise
can promote rather than inhibit coherence in natural systems and that the same effect can be harnessed in
engineered systems.
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Synchronization, the phenomenon in which oscillators in
a population evolve in step with each other, occurs because
of interactions or common driving forces among oscillators.
Influences from outside an oscillator network can often
be treated as noise, which is usually expected to inhibit
synchronization. Indeed, small noise can result in a
disproportionately large degree of asynchrony in networks
of nonlocally coupled oscillators [1]. In other contexts,
while network disorder can improve synchronous parallel
processing performance [2], noise has also been found to
limit the permissible time delays in communications
for network synchronizability and hinders parallel perfor-
mance [3]. Still, numerous biological systems—such as
neural networks [4–6], ecological communities [7], and
the cardiac and cardio-respiratory systems [8,9]—and
engineered systems—such as arrays of Josephson junctions
[10], lasers [11], and nanoelectromechanical devices
[12]—exhibit robust synchronization even under the
influence of noise.
Previous theoretical and experimental observations have

demonstrated that common noise (in which individual
oscillators experience a shared noise term) can actually
induce rather than inhibit synchronization [13,14]. The
understanding behind this phenomenon can be traced back
to the study of coherence resonance, in which noise leads to
greater temporal order in systems with irregular oscillations
[15,16]; to stochastic resonance [17], which has been
used to reduce the threshold to detect tactile stimuli in
human sensory perception [18]; and to the effects of

common driving in synchronizing chaotic or disordered
systems [19,20] as well as the synchronizing effects of
periodic driving with a spatially-dependent phase [21].
Synchronization induced by common noise has since been
studied in a variety of oscillator networks [22–24].
Here, we establish the alternative scenario shown in

Fig. 1 in which the dynamics are more synchronous in the
presence of uncorrelated noise than in the absence of noise
or even the presence of common noise. It seems intuitive
that uncorrelated noise would necessarily inhibit synchroni-
zation since, unlike the common noise case, it does not
have inherent order. However, uncorrelated noise is pre-
valent in many systems, and recent studies suggest the

FIG. 1. Schematics of the main effect. Coupled oscillators
experiencing uncorrelated noise exhibit more synchronous dy-
namics than those subjected to common noise or no noise. This
behavior is distinct from those previously observed in oscillator
models that synchronize due to large coupling or in response to
specific forms of common noise.
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potential for uncorrelated noise to have a positive impact on
synchronization. For example, coupled neuronal networks
subject to uncorrelated noise can exhibit enhanced co-
herence across the networks while reducing the coherence
within each network [25]. Uncorrelated noise acting on a
pair of oscillators has also been shown to enhance the phase
coherence of one oscillator at the expense of the other [26].
Furthermore, uncorrelated noise can promote untwisted
phase-locked states over twisted phase-locked states in
small-world networks of Kuramoto oscillators [27] and can
stabilize an otherwise unstable partially synchronized state
in a globally coupled model of oscillators with biharmonic
couplings [28]. However, the question of whether un-
correlated noise can enhance synchronization to a greater
extent than common noise had so far remained open.
We establish our results for several forms of coupled

limit-cycle oscillators governed by

dxi

dt
¼ fiðxiÞ þ

K
N

XN
j¼1

Aijhðxi;xjÞ þ
Xn
k¼1

gikðXÞξik; ð1Þ

where N is the number of oscillators, xi denotes the state
of oscillator i (assumed to be m dimensional), X ¼
ðx1;x2; � � � ;xNÞ encodes the full state of the system, fi
describes the evolution of the isolated oscillators, h is the
coupling function between two oscillators, K is the
(tunable) coupling constant, and Aij are the entries of
the coupling matrix (assumed to be 1 if nodes i and j are
coupled and 0 otherwise). We include n sources of noise
determined by the state-dependent direction gik and the
random variable ξik, with hξiki ¼ hξikξjli ¼ 0 for all i; j; k
and l ≠ k. The ξik term represents multiplicative noise in
the case that gik varies withX and represents additive noise
in the special case that gik is constant.
We assume that in the absence of coupling (K ¼ 0) and

noise (ξik ¼ 0) the isolated node dynamics approach a limit
cycle xiðtÞ → xc

i ðtÞ, with xc
i ðtÞ ¼ xc

i ðtþ TiÞ, where Ti is
the period of oscillator i. We can always define a phase
variable θiðxiÞ for oscillator i that, when restricted to
the limit cycle, evolves as θiðtÞ ¼ θið0Þ þ ωit, where
ωi ¼ 2π=Ti is the natural frequency. In the presence of
coupling, we consider the oscillators to be more synchron-
ized when their relative phase differences are smaller on
average. Following Kuramoto [29,30], we employ the
order parameter R2 ≡ jð1=NÞPj e

iθjðtÞj2 as a measure of
synchrony, where i is the imaginary unit. The time-
averaged order parameter R2 is closer to 1 when oscillators
are more synchronized and closer to 0 when the oscillators
are less synchronized. In the results below, we say that
noise enhances synchronization if R2 is larger in the
presence of noise than in the absence of noise. We consider
two broad forms of noise: common noise, for which
ξik ¼ ξjk for all i, j; and uncorrelated noise, for which
ξik and ξjk are independent random variables for all i ≠ j.
We are primarily interested in cases in which uncorrelated

noise enhances synchronization more so than common
noise.
Phase-reduced oscillators.—For weakly coupled oscil-

lators driven by weak noise, the phase-reduction approxi-
mation can be applied to reduce the dynamics of Eq. (1) to a
Kuramoto-type model with noise,

dθi
dt

¼ ωi þ
K
N

X
j

Aij sin ðθj − θiÞ þ giðθiÞηi: ð2Þ

The various noise terms in Eq. (1) result in a single
effective noise term giðθiÞηi in the phase dynamics if, for
instance, they are all Gaussian variables with auto-
correlations of the same functional form (as shown in
Sec. S1 of the Supplemental Material [31]). The effective
noise ηi will be assumed to be Gaussian and white unless
otherwise noted, with intensity specified by a matrix Dij
as hηiðtÞηjðt0Þi ¼ Dijδðt − t0Þ, where δ is the Dirac delta
function. The function giðθiÞ, called the phase sensitivity
function, arises because the effective noise acts on the
phase evolution with varying intensity depending on the
phase of the oscillator. In the case of common noise,
ηi ¼ ηj for all i, j and all the elements of the noise
intensity matrix are identical, with Dij ¼ σ2=2 for σ
denoting the noise intensity. In the case of uncorrelated
noise, hηiηji ¼ 0 for i ≠ j and the noise intensity matrix is
diagonal, with Dii ¼ σ2=2 for all diagonal elements.
We first consider the case of N ¼ 2 phase oscillators

with giðθiÞ ¼ 1, so that the multiplicative noise in Eq. (1)
becomes additive in the phase approximation. By moving
to a rotating frame, it is possible to take the mean natural
frequency equal to zero, so that, without loss of generality,
we can take ω1 ¼ Δω=2 and ω2 ¼ −Δω=2. In the absence
of noise, the oscillators’ phases will drift with respect to
each other when the coupling strength K is smaller
than Δω, as characterized by their separation angle
ϕ≡ θ2 − θ1, while their mean angle Θ≡ ðθ1 þ θ2Þ=2
remains a constant of motion. They become phase locked
as K increases above its critical value Kc ≡ Δω, initially
with a separation angle ϕ ¼ −π=2. In the presence of
Gaussian white noise with constant phase sensitivity and
for any value of K, the evolution of the density of an
ensemble of systems ρðϕ;Θ; tÞ can be described by the
Fokker-Planck equation

∂ρ
∂t ¼

∂
∂ϕ ½ðΔωþ K sinϕÞρ� þ σ2

2

�∂2ρ

∂ϕ2
þ 1

4

∂2ρ

∂Θ2

�
; ð3Þ

where we have changed variables from θ1 and θ2 to ϕ and
Θ. Because Eq. (3) is autonomous with respect to Θ and t,
we can find steady solutions which are independent of the
mean phase Θ. Direct integration in this case is possible
using an integrating factor. After some simplification, the
solution is
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ρ0ðϕÞ¼A
Z

2π

0

dψ

�
1

expð4πΔω=σ2Þ−1
þHðϕ−ψÞ

�

×exp½2Δωðψ−ϕÞ=σ2−2Kðcosψ−cosϕÞ=σ2�; ð4Þ

for 0 ≤ ϕ ≤ 2π, where A is a normalization constant andH
is the Heaviside step function.
Figure 2(a) shows how the steady ensemble density ρ0

varies as the noise intensity varies in the case with a
subcritical coupling constant K ¼ 0.95Kc. The ensemble
density, which is peaked near ϕ ¼ −π=2 in the absence of
noise, widens and its peak shifts toward zero as the noise
intensity increases. The widening of the peak represents a
loss in one form of coherence, as the oscillator phases
become less correlated, but the shifting of the mean
difference toward zero represents a gain in a different form
of coherence, as the oscillators spend more time with
similar phases. To assess the net impact on synchronization,
we consider the time-averaged order parameter, which
is determined from the steady-state distribution as
R2 ¼ R

2π
0 cos2ðϕ=2Þρ0ðϕÞdϕ. Figure 2(b) shows how the

time-averaged order parameter varies as the noise intensity
varies. The sharp, phase-locking transition at K ¼ Kc is
smoothed out as the noise intensity increases. For sub-
critical coupling constants, the order parameter initially
increases with increasing noise intensity, indicating an
enhancement in synchronization in response to un-
correlated noise that does not occur in the case of common
noise. This is illustrated in Fig. 2(c) for the same K as in
Fig. 2(a), but a qualitatively similar effect occurs for all
subcritical cases and for coupling constants just above the
critical one. For large coupling constants, the system is
already strongly synchronized in the absence of noise and
thus synchronization is not further enhanced by noise. Time
averaging of trajectories from direct numerical simulations
of Eq. (2) (see Sec. S2 of the Supplemental Material [31])
agree extremely well with the solutions derived from the
Fokker-Planck equation, as illustrated in Fig. 2(c).

Phase-amplitude oscillators.—We have shown that phase
oscillators can exhibit enhanced synchronization under
uncorrelated noise but not under common noise, assuming
the noise and coupling terms are weak so that the
phase-reduction approximation applies. We next consider
the question of synchronization enhancement in phase-
amplitude oscillators experiencing strong noise. As a
prototypical example, we consider N ¼ 2 coupled Stuart-
Landau oscillators each with m ¼ 2 degrees of freedom

xi ¼ ðxð1Þi ; xð2Þi Þ, which are conveniently represented as a

complex variable ziðtÞ ¼ xð1Þi ðtÞ þ ixð2Þi ðtÞ and evolve
according to

dzi
dt

¼ FiðziÞ þ
K
4

X2
j¼1

ðziz�j − zjz�i Þzi þ Gikðz1; z2Þξik; ð5Þ

where FiðziÞ≡ ð1þ iαiÞzi − ð1 − iγiÞjzij2zi describes the
intrinsic dynamics, αi and γi are constants, and � denotes
complex conjugation. The cubic form of the coupling in
Eq. (5) is selected to result in the Kuramoto-type coupling in
the phase reduction, which facilitates comparisons below. In
the absence of coupling and noise (when K ¼ 0, ξik ¼ 0),
the oscillators have a limit-cycle attractor ziðtÞ ¼ riðtÞeiθiðtÞ,
where riðtÞ ¼ 1, θiðtÞ ¼ θið0Þ þ ωit, and ωi ¼ αi þ γi.
Figure 3(a) shows the noise forces in the state space

of a Stuart-Landau oscillator for three forms of noise
determined by differing Gik. In each case, the tangent of
the noise force along the limit cycle determines the
phase sensitivity function in the weak-noise regime
for which the phase reduction would hold. As we proceed
with our analysis of the strong-noise regime, it is
instructive to compare with predictions for phase-
reduced oscillators. The phase sensitivity function
in the phase reduction for Eq. (5) takes the form gikðθiÞ ¼R
2π
0 dθj½Gikðeiθ1 ; eiθ2Þe−iθi −G�

ikðeiθ1 ; eiθ2Þeiθi �=4iπ, where
j ≠ i [31].
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FIG. 2. Solutions of the Fokker-Planck equation (3) for two phase oscillators subject to Gaussian white noise with constant phase
sensitivity giðθÞ ¼ 1. (a) Steady ensemble density ρ0 in Eq. (4) as a function of the phase difference ϕ for the subcritical coupling
K=Kc ¼ 0.95. (b) Time-averaged order parameter R2 as a function of the normalized coupling constant K=Kc. The arrows in (a) and
(b) indicate the change in the solutions as σ increases from zero to 2

ffiffiffiffiffiffiffi
Δω

p
, where the zero-noise case (thick line) also corresponds to the

case of common noise of any intensity. (c) Time-averaged order parameter R2 as a function of the normalized noise intensity σ=
ffiffiffiffiffiffiffi
Δω

p
at

the coupling constant K=Kc ¼ 0.95, where the lines show the solutions from the Fokker-Planck equation for uncorrelated noise
(continuous) and common noise (dashed). The circles show the agreement with the corresponding direct numerical simulations of
Eq. (2).
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Taking additive noise with Gi1ðz1; z2Þ ¼ i results in
multiplicative noise in the phase reduction with a trigono-
metric sensitivity function gi1ðθiÞ ¼ cosðθiÞ, which is
expected to induce synchronization under common noise.
On the other hand, taking Gi2ðz1; z2Þ ¼ izi results
in additive noise in the phase reduction, with a
constant sensitivity function gi2ðθiÞ ¼ 1. Noise that is
modulated by the noiseless part of the dynamics,
with Gi3ðz1; z2Þ ¼ FiðziÞ þ ðK=4ÞPj ðziz�j − zjz�i Þzi, also
results in additive noise in the phase reduction. We thus
expect, based on our results above for phase oscillators, that
uncorrelated noise will enhance synchronization but
common noise will not for Gi2 and Gi3 also in the
unreduced system.
Figures 3(b)–3(d) assess these predictions through

direct numerical simulations. For Gi1, common
Gaussian white noise enhances synchronization signi-
ficantly, as anticipated above, but uncorrelated noise also
enhances synchronization to some extent. For Gi2, uncor-
related Gaussian white noise enhances synchronization
while common noise does not, which once again agrees
with the prediction above. To assess if these predictions
continue to hold under non-Gaussian noise, we employed
noise sampled from Gamma distribution for Gi3, which is
dominated by brief, high-intensity bursts (see Sec. S2 of
the Supplemental Material [31]). It is interesting to note
that, while the enhancement for Gaussian cases are
qualitatively similar to the phase approximation in
Fig. 2(c), in the non-Gaussian case, the enhancement
continues to grow with increasing noise intensity over the
same noise range.

In summary, while the synchronization enhancement in
Eq. (5) depends on specific noise features, uncorrelated
noise continues to enhance synchronization beyond the
phase-reduction approximation in cases where common
noise does not.
Electrochemical oscillator experiments.—To test whether

the effect described above can be observed in real limit-
cycle systems, we performed experiments on coupled
electrochemical oscillators. These oscillators, detailed in
Supplemental Material, Sec. S3 [31] along with sample
experimental trajectories, are described by m ¼ 2 degrees of
freedom, which represent the electrode potential and the
concentration of the electroactive species in the vicinity of
the electrode [32]. Unlike Stuart-Landau oscillators, the limit
cycle in this case is not circular in the state space, and
thus the phase is a complicated function that we will
not attempt to describe analytically. The experimental system
consists of two such electrochemical oscillators coupled
together through a resistor and the shared fluid environment.
For statistical analysis, we create several realizations of

the experimental system, with each realization having
slightly different natural frequencies and being subject to
no noise, common noise, and uncorrelated noise. The
experiments are repeated for three levels of noise intensity,
and the time-averaged order parameter is measured for each
experimental run to assess synchronization. Figure 4 shows
the statistical analysis for these experiments. We find that
for low noise intensity, there is no statistically significant
difference between the cases of no noise, uncorrelated
noise, and common noise. For intermediate noise inten-
sities, uncorrelated noise enhances synchronization signifi-
cantly more so than common noise, confirming the effect
described above. For high noise intensity, common noise
exhibits a greater synchronization enhancement.
We emphasize that, in these experiments, we did not

attempt to control the direction of the noise force, given that
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FIG. 3. Impact of noise on phase-amplitude oscillators. (a) State
space of a Stuart-Landau oscillator, indicating the velocity field in
the absence of noise and coupling (continuous lines), the limit-
cycle attractor (dashed circle), and the noise forces (arrows). Three
forms of noise are represented: Gaussian white noise with Gi1
(vertical arrows), Gaussian white noise withGi2 (counterclockwise
arrows), and Gamma distributed noise with Gi3, which acts in the
direction of the uncoupled velocity field (continuous lines) when
the coupling is small. (b)–(d) Time-averaged order para-

meter R2 as a function of the noise intensity σ for correlated
(open circles) and uncorrelated (filled circles) noise corresponding
to the Gi1 (b), Gi2 (c), and Gi3 (d). The oscillator parameters are
α1 ¼ 1 and α2 ¼ γ1 ¼ γ2 ¼ 0, and the coupling constant is
K ¼ 0.95, which is subcritical.
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normalized by the square root of the number of realizations),
and the arrows between bar plots go from the smaller mean value
to the larger mean value with percentages indicating the
confidence from a paired t test.
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noise can be easily applied only to the electrode potential
and not to the chemical concentration, nor did we attempt to
determine (or fine-tune) the phase sensitivity function,
given the complexity of the limit cycle. Nevertheless, we
still observe a greater degree of synchronization enhance-
ment for the case of uncorrelated noise than for the case of
common noise for intermediate noise intensity. Thus, these
experiments reveal that uncorrelated noise can outperform
common noise in synchronization enhancement even
without careful design.
Discussion.—Our demonstration that uncorrelated

noise can enhance synchronization to a greater degree
than common noise reveals a new mechanism for how
coherent behavior can emerge naturally in spatially-
distributed noisy systems. The mechanism that generates
this noise-enhanced synchronization can be interpreted
as follows. On the one hand, when coupled oscillators are
close to phase locking, they often spend time at relative
angles that are far from zero, and their phases do not add
coherently. On the other hand, uncorrelated noise allows
the oscillators to escape from these large phase separa-
tions and spend more time with similar phases, even
when common noise cannot do so precisely because it
exerts the same effect on the phases of all oscillators. Our
analysis indicates that this effect occurs prominently
when the impact of the noise on coupled oscillators is
independent of their phases, which means that the
coherence is not inherited from a biased filtering of
the noise.
These findings are counterintuitive because the noise

terms acting on different oscillators exhibit permutation
symmetry for common noise but not for uncorrelated
noise; yet, for the systems considered here, the resulting
dynamical states are more symmetric in the uncorrelated
case. Such synchronization enhancement can thus
be interpreted as a manifestation of asymmetry-induced
symmetry [33], a recently recognized phenomenon in
which some degree of asymmetry in a system actually
increases the symmetry in the observed state of that system.
In this study, we observed the preferential enhancement

of coherence by uncorrelated noise over common noise in a
variety of coupled oscillator systems, including phase and
phase-amplitude oscillators, both theoretically and experi-
mentally. While we focused here on pairs of oscillators for
clarity, we can show that this effect also occurs more
generally in larger networks with a frequency gap [34],
such as random networks of Janus oscillators [35,36] (see
Sec. S4 of the Supplemental Material [31]) and multilayer
networks relevant to the distributed mammalian neural and
circadian systems [37–40] (see Sec. S5 of the Supplemental
Material [31]). These results overturn the widely held
assumption that uncorrelated noise necessarily tampers
coherence and suggest that distributed networks that rely
on synchronization, such as the network of circadian clocks
distributed throughout the body, may benefit from the

uncorrelated noise that they experience. In contrast with
coherence induced by common noise, the enhancement
due to uncorrelated noise requires nonvanishing coupling
between the oscillators, thus revealing a new relationship
between noise and network interactions.
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