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We demonstrate that rotationally symmetric chiral metasurfaces can support sharp resonances with the
maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being
uncoupled from one circular polarization of light and resonantly coupled to its counterpart, a metasurface
hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum with the quality
factor limited by weak dissipation losses. We propose a realization of such chiral BIC metasurfaces based
on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations.
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Chirality refers to a global property of many systems
which do not coincide with their mirror images [1].
Photonic structures made of chiral elements exhibit chi-
roptical effects such as optical dichroism for left and right
circularly polarized light, the property highly suitable for
chiral nanophotonics [2]. However, strong chiroptical
effects are challenging to achieve, and strong resonances
of plasmonic structures [3] have been suggested for chiral
mirrors [4,5]. Intrinsic chirality, i.e., chiroptical effects at
normal incidence, is prohibited in planar structures but can
be observed in opaque metallic structures of complex
shapes [6] and dielectric layers facilitating chiral excitation
of higher-order multipoles [7].
Recently, all-dielectric metasurfaces have been

employed to achieve sharp optical resonances empowered
by the physics of bound states in the continuum (BICs)
when light at the resonance remains localized in the
metasurface even though the state coexists with a con-
tinuum of electromagnetic waves [8–10]. In practice, BICs
are realized with high but finite quality factors due to
structural losses and imperfections, and they are usually
termed quasi-BICs. The BIC-inspired resonances in the
symmetry-broken all-dielectric metasurfaces are receiving
attention for many applications [11–13]. To date, all
metasurfaces supporting quasi-BIC resonances were asso-
ciated with the interaction of BICs and radiative continuum
due to in-plane symmetry breaking. Combined in twisted
stacks such metasurfaces can remarkably efficiently control
the chirality and spectrum of reflected light [14]. However,
the potential of direct chirality manipulation using out-of-
plane BIC symmetry breaking remains unexplored.
In this Letter, we introduce the concept of highly

transparent chiral metasurfaces by shaping BICs into
quasi-BICs of maximum optical chirality delivering narrow
peak of unit height in the circular dichroism (CD) spectrum.
We propose a design based on dimers of dielectric bars and

validate the maximum chirality of its quasi-BIC resonance
by numerical modeling.
We consider a metasurface shown schematically in

Fig. 1, located in the xy plane with the z axis being the
Nth order rotational symmetry axis (CN symmetry group).
For N ≥ 3, all polarization transformations of incoming
waves incident normally from both sides are determined by
the chirality. Assuming e−iωt time dependence of all fields,
we consider waves polarized along the complex unit
vectors:

e� ¼ ðex ∓ ieyÞ=
ffiffiffi
2

p
: ð1Þ

For waves propagating in the positive z direction, eþ and
e− correspond to the right circular polarization (RCP) and
left circular polarization (LCP), respectively. For waves in
the negative z direction, the opposite is true.

FIG. 1. Sketch of the transmission-reflection problem for
rotationally symmetric chiral metasurfaces described by the S-
matrix Eq. (2).
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Most generally, this transmission-reflection problem is
described by an S-matrix equation (see the Supplemental
Material [15]) relating the outgoing wave amplitudes, b�
and b0�, with the incident wave amplitudes, a� and a0�:

0
BBB@

bþ
b0þ
b−
b0−

1
CCCA ¼

0
BBB@

r tL 0 0

tR r0 0 0

0 0 r tR
0 0 tL r0

1
CCCA

0
BBB@

aþ
a0þ
a−
a0−

1
CCCA: ð2Þ

Fundamental principle of reciprocity together with the
rotational symmetry put substantial restrictions on the
metasurface transmission and reflection [22,23]. In par-
ticular, the RCP and LCP transmission amplitudes, tR and
tL, respectively, are equal for both sides of incidence along
with the key optical parameters, optical rotation (OR) and
CD:

OR ¼ 1

2
ðarg tL − arg tRÞ; CD ¼ jtRj2 − jtLj2

jtRj2 þ jtLj2
: ð3Þ

The reciprocity also determines that the reflection ampli-
tudes r and r0 are helicity independent, which directly
relates the CD with the energy dissipation. Indeed,
absorbed parts of the energy of incident RCP or LCP
waves, AR;L ¼ 1 − jtR;Lj2 − jrj2, determine that the trans-
mittance difference jtRj2 − jtLj2 ¼ AL − AR arises due to a
difference in dissipation.
The inherent connection of the CD with dissipation

naturally determines a quantitative condition of maximum
optical chirality: it is achieved when the metasurface is fully
transparent for one circular polarization and totally absorbs
its counterpart. Note that this excludes conversion of wave
helicity and the metasurface is dual [24].
To specify a feasible route to the maximum chirality, we

employ the phenomenological coupled-mode theory
(CMT) allowing expressing abstract scattering amplitudes
in terms of physically meaningful parameters [25–27].
CMT generalized for chiral metasurfaces with plasmon
[22] and dielectric [28] resonances reproduced their
observed strong chirality and clarified its origin.
In CMT, transmission and reflection are split into

background and resonant channels with the latter deter-
mined by excitation and irradiation of eigenstates hosted by
the structure. Note that particular eigenstate normalization
is not required [27]. CMT yields (see these and following
relations derived in Supplemental Material [15]) the fol-
lowing transmission amplitudes:

tR ¼ τ−
mþm0

−

iðω−ω0Þ− γ0
; tL ¼ τ−

m0þm−

iðω−ω0Þ− γ0
; ð4Þ

where τ is the background transmission amplitude, the
resonance frequency ω0 and damping γ0 are helicity

independent, and m� are the parameters of coupling of
the eigenstates to the waves of corresponding helicity
incident on one metasurface side, and m0

� are those for
the other side. Accordingly, the optical chirality (3) is
determined by the chirality of eigenstate coupling to the
free-space continuum.
All losses contribute to the damping γ0 ¼ γd þ γr, where

γd is its dissipative part, and the radiative part is determined
by the coupling:

2γr ¼ jmþj2 þ jm0þj2 ¼ jm−j2 þ jm0
−j2: ð5Þ

The difference of transmittances is expressed as

jtRj2 − jtLj2 ¼ 2γd
jm−j2 − jmþj2

ðω − ω0Þ2 þ ðγr þ γdÞ2
; ð6Þ

which emphasizes the crucial role of dissipation for the CD.
Consider, for definiteness, how to maximize the optical

chirality by enhancing jtRj and suppressing jtLj.
Equation (4) suggests achieving the ultimate value jtRj ¼
1 by setting jτj ¼ 1 and mþm0

− ¼ 0. The latter condition
requires uncoupling the eigenstate from waves of certain
helicity on a particular metasurface side.
For example, we set mþ ¼ 0 and, according to (6),

jtLj2 ¼ 1 − 2γd
jm−j2

ðω − ω0Þ2 þ ðγr þ γdÞ2
; ð7Þ

with the minimum reached at the resonance, ω ¼ ω0:

min jtLj2 ¼ 1 −
8γdjm−j2

ðjm−j2 þ jm0
−j2 þ 2γdÞ2

; ð8Þ

where the radiative damping (5) is substituted. The ultimate
limit min jtLj2 ¼ 0 is achieved only if simultaneously
m0

− ¼ 0 and jm−j2 ¼ 2γd.
Therefore, the maximum chirality requires mþ ¼

m0
− ¼ 0, i.e., eigenstates selectively decoupled from the

free-space continuum. The second condition reduces by
Eq. (5) to

γr ¼ γd ð9Þ

which is a classical critical coupling regime [29] of a
resonator receiving from the continuum exactly the amount
of energy it is capable to dissipate.
To summarize, CMT unambiguously points out that for

the maximum optical chirality a metasurface has to do the
following: (i) host eigenstates selectively coupled to cir-
cularly polarized waves (e.g., the “þ” state uncoupled from
RCP waves incident on one side and the “−” state
uncoupled from RCP waves incident on the other side)
and (ii) fully absorb the light of the opposite circular
polarization in the critical coupling regime.
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Note that the phenomenological approach requires a
metasurface performing identically from its both sides, e.g.,
being coupled with mþ ¼ 0 and jm−j2 ¼ 2γd to the waves
on one side and with m0

− ¼ 0 and jm0þj2 ¼ 2γd on the other
side. This can be ensured by restricting to flipping-
symmetric designs having an in-plane C2 rotational axis.
Achieving maximum optical chirality requires precise

control of the coupling of eigenstates to the free-space
continuum. In the following, we present a step-by-step
design of such eigenstates starting from fully uncoupled
BICs and carefully enabling their selective coupling by
symmetry breaking perturbations.
Consider a planar lattice of pairs of parallel dielectric

bars shown in Fig. 2(a). The lattice is reflection symmetric
with respect to three types of mirror planes: those indicated
as σ1 and σ2 and the plane of drawing. All dimers are in
perfectly symmetric situations as the vertical C2 axes
(intersection of planes σ1 and σ2) pierce exactly through
their centers. All resonant eigenstates transform according
to the irreducible representations of the C2 group and,
among those, there is a symmetric A representation. The
electric resonance of this symmetry is described by a pair of
antiparallel dipole moments p1 ¼ −p2 shown on the top of
Fig. 2(a).
To estimate the eigenstate coupling to a plane wave

polarized along a unit vector e and having a wave vector k

along the z axis, one can integrate the incident wave field
with the eigenstate field or, equivalently, with its current
density [11,27]:

me ∝
Z
V1;V2

dr½jðrÞ · e�eikz; ð10Þ

where V1;2 are the volumes of dielectric bars. For each
volume, the integral yields the dipole moment of the
corresponding bar, and the antiparallel dipole eigenstate
is uncoupled of all incident polarizations as

me ∝ p1 · eþ p2 · e ¼ 0: ð11Þ

This is a perfect BIC with respect to all normally inci-
dent waves.
Introducing weak symmetry breaking transforms BIC

into quasi-BIC. As has been studied in detail [11],
diverging the bars in plane by an angle θ eliminates the
mirror symmetry plane σ2 and the dimer rotational axis C2.
The parameters of coupling to circularly polarized waves
obtained from Eq. (10) with e ¼ e� and the dipole
moments diverged by θ are

m� ∝ p1 · e� þ p2 · e� ¼ i
ffiffiffi
2

p
p sin θ: ð12Þ

They are achiral, as the structure retains two mirror planes:
σ1 and that of the drawing.
An out-of-plane symmetry breaking can be introduced

by a small vertical offset d of bars within each dimer
eliminating the mirror plane σ1 together with the dimer C2

axis. The corresponding coupling parameters,

m� ∝ p1 · e� þ p2 · e�eikd ¼ i
ffiffiffi
2

p
peikd=2 sin kd=2; ð13Þ

are also achiral due to the remaining mirror plane σ2.
Combining the offset by d with the rotation by θ, as

illustrated in Fig. 2(b), breaks all mirror symmetries.
Depicted square lattice of the dimers possesses the out-
of-plane C4 and the in-plane C̃2 rotational axes. The
coupling parameters estimated as m� ∝ p1 · e�þ
p2 · e�eikd ¼ i

ffiffiffi
2

p
peikd=2 sin ðkd=2 ∓ θÞ, elucidate the rise

of optical chirality. The retained C̃2 axis ensures similar
coupling to waves on the other side: m0

� ∝ i
ffiffiffi
2

p
peikd=2×

sin ðkd=2� θÞ.
Remarkably, maximizing the quasi-BIC chirality is

possible by a simple adjustment of the offset and rotation
as

θ ¼ kd=2; ð14Þ

which ensures that mþ ¼ m0
− ¼ 0. Under this condition,

the remaining coupling parameters

m− ¼ m0þ ∝ i
ffiffiffi
2

p
peiθ sinð2θÞ ð15Þ

(a) (b)

FIG. 2. Shaping quasi-BIC chirality by symmetry breaking.
(a) A dimer of parallel bars and their lattice hosting BIC
resonances. (b) A dimer of bars vertically offset by d and rotated
by θ, and a unit cell of their lattice hosting chiral quasi-BIC
resonances. All bars are identical and the colors indicate location
on different levels. Two types of mirror symmetry planes and
three types of rotational symmetry axes are indicated. The lattice
constant a is shown in (b). Relative orientation and offset of
electric dipole moments characterizing BIC and quasi-BIC
eigenstates are shown on the top for each dimer type.
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are controlled by θ and allow continuous tuning to match
the dissipation in the critical coupling regime (9).
To validate the symmetry-based analysis, we numeri-

cally study a particular structure using COMSOL

MULTIPHYSICS. To keep relevance with available materials
(silicon and germanium), we model bars consisting of
dielectric having complex refractive index n ¼ 4þ iκ with
small extinction coefficient κ. For simplicity, the back-
ground refractive index is set to unity. The dimensions of
elliptical bars are l ¼ 220 nm, w ¼ 70 nm, and h ¼
100 nm (see Fig. 2). The gap between parallel bars is
set to 15 nm and the square lattice constant a ¼ 480 nm
excludes diffraction in the considered wavelength range.
First, we simulate the transmission of normally incident

light by achiral lattices of parallel bar dimers, dimers
diverged by an in-plane rotation by θ ¼ 3°, and dimers
with an out-of-plane offset d ¼ 10 nm. In all three cases,
the transmission is polarization insensitive. As seen in
Fig. 3(a), the transmittance spectra stay generally very close
exhibiting a broad minimum at about the 560 nm wave-
length associated with the magnetic-dipole (MD) reso-
nance. Close to the 596 nm wavelength, either of the two
weak symmetry perturbations give rise to much sharper
quasi-BIC resonances fully inline with the estimates
(11)–(13).

To determine the parameters necessary for a quasi-BIC
uncoupled from RCP waves, we use Eq. (14) to estimate
that the offset d ¼ 10 nm at a 596 nm wavelength requires
the angle θ ¼ 3.0°. Indeed, as shown in Fig. 3(b), for this
angle, the resonance of the RCP transmittance is weak.
However, the ideal uncoupling occurs for θ ¼ 3.5°. Further
increasing the angle to θ ¼ 4.0° restores the resonance. We
conclude that Eq. (14) specifies geometries very close to
optimal, though a small mismatch arises due to a slight
misalignment of the bar dipole moment and shape.
Knowing the perfect combination of θ and d, we proceed

to verify the main CMT conclusions. For a proper chiral q-
BIC state isolated from RCP waves by mþ ¼ m0

− ¼ 0, the
minimum LCP transmittance at the resonance is given by
Eq. (8) with m0

− ¼ 0. The remaining coupling parameter
jm−j2 is determined by the bar refractive index, dimensions
and packing, while weak dissipation affects it negligibly.
The damping, on the contrary, is determined by the
dissipation, as γd ∝ κ.
If a certain value κ ¼ κopt corresponds to the critical

coupling regime, then Eq. (8) can be expressed as

min jtLj2 ¼
�
κopt − κ

κopt þ κ

�
2

: ð16Þ

(a) (c) (e)

(b) (d) (f)

quasi-BIC

FIG. 3. Simulated transformation of BIC into maximum chiral quasi-BIC. Transmittance spectra of achiral structures (a) comprised of
parallel bar dimers, dimers rotated by θ and dimers offset by d, exhibit strong MD resonance and sharp quasi-BIC resonance controlled
by rotation and offset. RCP and LCP transmittance spectra (b) of chiral structures with equal offset and different rotation angles. RCP
and LCP transmittance spectra (c) of structures with quasi-BIC uncoupled from RCP waves for different extinction coefficient κ with the
inset comparing simulated minimum transmittance with that predicted by CMT Eq. (16). Polarization distribution (d) in maximum chiral
quasi-BIC for κ ¼ 0.01, θ ¼ 3.5°, and d ¼ 10 nm excited by linearly polarized light of λ ¼ 596.5 nm: distribution of real (red cones)
and imaginary (blue cones) polarization vector components are juxtaposed with the colormap of average polarization. Spectra of
transmittances (e), CD (f), and OR [inset in (f)] of structures hosting maximum chiral quasi-BICs with symmetry breaking parameters
and losses following the scaling rule θ2 ∝ d2 ∝ κ.
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Accordingly, we keep all other parameters fixed and
simulate the transmission of structures with different κ,
as illustrated in Fig. 3(c). Decreasing κ drastically elevates
the jtLj2 minimum as the losses are critical for the CD.
Increasing κ far above 0.01 also negatively affects CD,
elevates the jtLj2 minimum and suppresses jtRj2. Plotting
min jtLj2 values as a function of κ and fitting them by the
simple dependence (16) [see the inset in Fig. 3(c)] validates
the CMT conclusions and precisely determines κopt ¼ 0.01.
The inner structure of the chiral quasi-BIC state is illus-
trated in Fig. 3(d) by the polarization distribution within a
metasurface unit cell upon linearly polarized illumination.
Only the LCP part interacts with the chiral quasi-BIC and
excites the currents of the e− symmetry: anticlockwise
rotation by π=2 is equivalent to multiplication by i.
Finally, combining Eqs. (15) and (14) reveals a general

rule: the maximum chirality is established with the three
small parameters scaling as θ2 ∝ d2 ∝ κ. To verify this, we
simulate the transmission of structures with doubled and
halved κ and with θ and d varied accordingly by a factor offfiffiffi
2

p
. As shown in Fig. 3(e), the structures indeed host quasi-

BICs with maximal chirality; their CD spectra in Fig. 3(f)
possess resonances of unit height accompanied by typical
OR kinks shown in the inset.
As the Si refractive index at λ ¼ 595 nm is nSi ¼

3.948þ 0.021i [30], the broader resonance in Figs. 3(e)
and 3(f) describes a practically available realization. Lower
extinction coefficients of 0.01 and 0.005 correspond to Si at
∼700 nm and ∼800 nm, respectively. Sharper CD reso-
nances available in the near IR range require fabrication
technique supporting precise nanometer-scale offsets.
In conclusion, we have developed the concept of chiral

BIC metasurfaces transmitting one circular polarization and
resonantly blocking the opposite polarization. Our design
strategy is applicable for maximizing the optical chirality of
other types of resonant metasurfaces operating in the
visible and near IR spectral ranges.
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