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We study artificial neural networks with nonlinear waves as a computing reservoir. We discuss universality
and the conditions to learn a dataset in terms of output channels and nonlinearity. A feed-forward three-
layered model, with an encoding input layer, a wave layer, and a decoding readout, behaves as a conventional
neural network in approximating mathematical functions, real-world datasets, and universal Boolean gates.
The rank of the transmission matrix has a fundamental role in assessing the learning abilities of the wave.
For a given set of training points, a threshold nonlinearity for universal interpolation exists. When considering
the nonlinear Schrödinger equation, the use of highly nonlinear regimes implies that solitons, rogue, and
shock waves do have a leading role in training and computing. Our results may enable the realization of
novel machine learning devices by using diverse physical systems, as nonlinear optics, hydrodynamics,
polaritonics, and Bose-Einstein condensates. The application of these concepts to photonics opens the way to
a large class of accelerators and new computational paradigms. In complex wave systems, as multimodal
fibers, integrated optical circuits, random, topological devices, and metasurfaces, nonlinear waves can be
employed to perform computation and solve complex combinatorial optimization.
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Deep artificial neural networks (DNN) have unprec-
edented success in learning large datasets for, e.g., image
classification or speech synthesis [1,2]. However, when the
number of weights grows, optimization becomes hard. In
recent years, many groups proposed new computational
models, which are less demanding with respect to DNN in
terms of the number of weights to be trained, and more
versatile for their physical implementation. These models
include neuromorphic computing and random neural
networks, which require the training of only a subset of
nodes [3–10]. This fact opens the possibility of using many
physical systems for large-scale computing [11]. Following
earlier investigations [12,13], various groups reported on
computing machines with propagating waves, like Wi-Fi
waves [14], polaritons [15,16], and lasers [17–26]. The
photonic accelerators speed up large-scale neural networks
[27–30] or Ising machines [31–37]. Photonic architectures
for machine learning might also pave the way to the
solutions of complex combinatorial problems. For exam-
ple, the recent article on Ising recurrent systems in
integrated photonics [19] extends the coherent hardware
for machine learning to combinatorial problems, as the
works on the spatial photonic Ising machine [35,38–40]
expand the hardware previously used for random neural
networks and reservoir computing.
Despite these many investigations, fundamental questions

remain open. What kind of computation can waves do? Are
linear or nonlinear waves universal computing machines?
Which parameter quantifies the learning process? We need a

general theory that links the physics of nonlinear waves with
the maths of machine learning and reservoir computing [41].
Also, no theoretical work addresses highly nonlinear proc-
esses, such as nonlinear gases, shocks, and solitons (recently
subject of intense research [42–48]), to perform computation
at a large scale. In this Letter, we study computational
machines in which the nonlinear waves replace the internal
layers of the neural network. We discuss the conditions for
learning, and demonstrate function interpolation, datasets,
and Boolean operations.
The wave-layer model.—Figure 1 shows our model, a

“single wave-layer feed-forward network” (SWFN), in
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FIG. 1. Single wave-layer feed forward neural network. The
input vector x is encoded in the input wave ψ0, including a bias
wave function ψb. The wave evolves according to a nonlinear
partial differential equation. The readout layer decodes by
sampling the modulus square jψLj2 of the final wave in NC
readout channels, linearly combined to give the output o.
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analogy with the “single layer feed-forward neural net-
work” (SLFN) [2,4,5]. An input vector x with components
x1; x2;…; xNX

seeds the network. NC output channels gj
with j ¼ 1; 2;…; NC form the output vector g. The
channels are linearly combined at the readout
o ¼ PNc

j¼1 βjgj ¼ β · g. β with components βj is the vector
of the weights determined by the training dataset.
The link between g and x is given by the complex field

ψLðξ;xÞ emerging from the propagation of the initial state
ψ0ðξ;xÞ, with ξ the transverse coordinate. The readout
functions are samples gj ¼ jψLðξj;xÞj2 such that

oðxÞ ¼
XNC

j¼1

βjgjðxÞ ¼ β · gðxÞ: ð1Þ

The goal is determining the weights β to approximate a
target function fðxÞ, or learn a finite dataset. The final state
ψLðξ;xÞ depends on the input vector x, because x is
encoded in the initial condition ψ0ðξ;xÞ. We report further
details in the Supplemental Material [49].
Using Dirac brackets to simplify the notation, we have

ψ0ðξ;xÞ ¼ hξj0;xi, and the final state is ψLðξ;xÞ ¼
hξjL;xi. The evolution from ψ0ðξ;xÞ to ψLðξ;xÞ follows
a nonlinear partial differential equation. We use the non-
linear Schrödinger equation

{∂ζψ þ ∂2
ξψ þ χjψ j2ψ ¼ 0; ð2Þ

with ψðξ; ζ ¼ 0Þ ¼ ψ0ðξ;xÞ, and ψðξ; ζ ¼ LÞ ¼ ψLðξ;xÞ,
and ζ the evolution coordinate. In (2), χ measures the
strength of the nonlinearity, and χ ¼ 0 corresponds to linear
propagation. We write the input as j0;xi ¼ jin;xi þ jbi,
where jbi is the bias (see Fig. 1). The encoder maps x into
jin;xi in the Fourier space. For NX plane waves jkqi,
ψ inðξ;xÞ ¼ hξjin;xi, and

jin;xi ¼
XNX

q¼1

xqjkqi: ð3Þ

We adopt a generalized basis jμi, being the initial state
ψ0ðξ;xÞ ¼ hξj0;xi and j0;xi ¼ P

μ aμjμi, with

aμ ¼
XNX

q¼1

wμqxq þ bμ; ð4Þ

wμq ¼ hμjkqi the input weights, and bμ ¼ hμjbi compo-
nents of the bias vector b. In the finite-bandwidth case, μ is
a discrete index, and the wave function is determined by a
set of samples, following the Nyquist-Shannon theorem
with ξμ sampling points, jμi ¼ jξμi, and bμ ¼ hξμjbi. In
analogy to neural networks, the bias separates the nonlinear
response with respect to the data. Without the bias, low
amplitude inputs will experience different nonlinearity. The

bias input strengthens and tailors the nonlinear response by
exciting background nonlinear waves, to which the input
signal is superimposed.
Training.—The model maps the SWFN training to

conventional reservoir computing protocols. Given a finite
number NT of training points xðtÞ, with t ¼ 1; 2;…; NT ,
and corresponding targets TðtÞ, the wave “learns” the
training set when oðtÞ ¼ o½xðtÞ� ¼ TðtÞ for any t.
To establish the conditions for learning, we evaluate the

NT × NC transmission matrix Htj ¼ gj½xðtÞ� ¼ jψLðξj;w ·
xðtÞ þ bÞj2 by evolving the wave on all the NT inputs
ψ0½ξ;xðtÞ�, and solving the linear system

o½xðtÞ� ¼
XNC

j¼1

Htjβj ¼
XNC

j¼1

gj½xðtÞ�βj ¼ f½xðtÞ� ¼ TðtÞ; ð5Þ

that is H · β ¼ T, with T ¼ ðTð1Þ; Tð2Þ;…; TðNT ÞÞT .
The machine can learn the entire dataset with zero error

only if NC ¼ NT and H has rank NC. In this case, β exists
such that jjH · β − Tjj ¼ 0. In the general case NC ≤ NT ,
the minimum-norm least-squares solution is found by the
Moore-Penrose pseudoinverse of H [5].
However, even when NC ¼ NT , the matrix H is not

always invertible, and hence the model cannot learn the
dataset with arbitrary precision. We find that there are
two conditions for learning: (i) the function jψLðξ;w ·
xðtÞ þ bÞj2 must be nonpolynomial in b and (ii) in ξ.
Following the theorem we demonstrate in the

Supplemental Material [49], the need for condition (i) arises
from Eq. (5), since an arbitrary fðxÞ can only be repre-
sented by nonpolynomial functions gjðxÞ [50,51]. For
example, for a bias vector b with identical components
bμ ¼ c as input in the linear modulational instability, jψLj2
is a quadratic polynomial in c, and the SWFN cannot
represent any arbitrary fðxÞ [42]. In the recently studied
nonlinear modulational instability, the output jψLj2 is a
transcendental function of c [46–48]; in this highly non-
linear regime, the SWFN can represent arbitrary functions.
The need for condition (ii) can be demonstrated follow-

ing Refs. [5,52]: the vector hðξÞ with components htðξÞ ¼
jψL½ξ;w · xðtÞ þ b�j2 spans RNT if jψL½ξ;w · xðtÞ þ b�j2 and
all its derivatives with respect to ξ are nonvanishing.
Correspondingly, NT points ξj exist, such that hðξjÞ is a
basis, and H has rank r ¼ NT . Condition (ii) is commonly
satisfied in practical implementations, as ψL½ξ;w · xðtÞ þ b�
is typically a normalizable function (finite energy) that is
regularized upon evolution even in the presence of dis-
continuities in the initial conditions. It results that all the
derivatives of jψL½ξ;w · xðtÞ þ b�j2 with respect to ξ are
nonvanishing, as in the box problem here considered.
Conditions (i) and (ii) have two significant conse-

quences: (i) if the wave evolution is linear, the wave is
not a universal approximator, indeed, oðxÞ is only a
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quadratic function of b; (ii) not all nonlinear evolutions
act as universal approximators. For example, a wave
that undergoes only self-phase modulation, i.e., ψLðξÞ ¼
ψ0ðξÞ exp½{jψ0ðξÞj2L�, will not result in a nonpolynomial
output function (it will be only a quadratic function of the
bias b).
Also, in the presence of weak polynomial nonlinearities

(as in conventional nonlinear optics), to have universal
approximators, one needs that the final wave is a strongly
nonlinear function of the input, which means that all the
derivatives with respect to the bias wave parameters
(amplitude, width, etc.) must be nonvanishing. This con-
dition is not satisfied in a perturbative regime. Starting from
a linear propagation [χ ¼ 0 in Eq. (2)], when augmenting
the nonlinearity jχj, one observes an increasing ability to
learn, corresponding to a growing rank r. For a given
training set, there is a threshold nonlinearity for the training
error to be zero.
These arguments suggest choosing the bias as the

simplest function that triggers the generation of solitons
and highly nonlinear waves (as breathers) and provides a
nonpolynomial input or output relation. We adopt as bias a
finite-energy flat beam. We test numerically the SWFN and
we show in the following: (i) the SWFN can approximate
arbitrary functions and learn datasets as conventional
reservoir computing only above a critical nonlinearity,
(ii) linear propagation does not act as a universal approx-
imator, (iii) the SWFN can implement universal Boolean
logic gates, as the NAND, and (iv) the SWFN can perform
with binary and real valued inputs.
Example 1, sinðπxÞ=ðπxÞ with binary encoding.—We

first show learning input or output functions. We consider
y ¼ sinðπxÞ=ðπxÞ, and adopt a binary encoding of the real
variable x in the range ½−π; π�. We quantize x by NX ¼
12 bits, such that x ¼ PNX

q¼1 x̃q2
q−1 defines the binary

string x̃ ¼ ðx̃1; x̃2;…; x̃NX
ÞT with x̃q ∈ f0; 1g. We obtain

the input vector x by xq ¼ expð{ϕqÞ and the one-to-one
correspondence ϕq ¼ 0 ↔ x̃q ¼ 1, ϕq ¼ π ↔ x̃q ¼ 0.
Therefore jin; xi in Eq. (3) is given by NX plane waves
jkqi with unitary amplitude and phase ϕq. In the simulation
of Fig. 2, ξ is discretized with 512 points in the domain
½−150; 150�, and L ¼ 1. The NC channels are linearly
distributed in the range ½−100; 100�. The bias is a rectan-
gular wave with amplitude ab ¼ 1 and half width wb ¼ 100
[Fig. 2(a)]. Figure 2(b) shows the evolution of a represen-
tative x. We study the learning when increasing NC, at
NT ¼ 200 and χ ¼ 25. Figure 2(c) illustrates the training
data compared with the SWFN output for NC ¼ 20 and
χ ¼ 25; Fig. 2(d) shows the case for NC ¼ NT ¼ 200. In
the latter case, all the training points are learned with zero
error within numerical precision. Exact learning occurs at
NC ¼ NT , when the error abruptly drops of several orders
of magnitudes, this is evident in Fig. 2(e), showing the
training error versus NC. As shown in Fig. 2(c), using

NC ¼ 20 channels for NT ¼ 200 provides a poor repre-
sentation. Figure 2(d) demonstrates that a nearly exact
representation is obtained for NC ¼ NT ¼ 200, when the
error drops of several order of magnitudes [Fig. 2(e)].
The role of nonlinearity is studied in Fig. 2(f). Learning
requires that the rank r of H is equal to NC. Figure 2(f)
shows r versus χ for NC ¼ NT ¼ 200. Only above a
threshold value for χ, the learning condition r ¼ NT is
achieved. The Supplemental Material [49] reports further
results of the performance of the SWFN, with training and
testing datasets.
Example 2, abalone dataset with amplitude encoding.—

We test learning conventional datasets for neural networks.
We consider the “abalone dataset” [53], which is one of the
mostly used benchmarks for machine learning, and con-
cerns the classification of sea snails in terms of age and
physical parameters. Each training point in this dataset has
a high-dimensional input with NX ¼ 8, identically encoded
in the input vector x. jin; xi in Eq. (3) is then defined by NX
plane waves jkii with amplitude xi and zero phase.
Figures 3(a) and 3(b) show the bias wave function and a
representative x propagation. Figure 3(c) shows values
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FIG. 2. Learning the function y ¼ sinðπxÞ=ðπxÞ. (a) Bias
evolution. (b) Wave evolution for a representative point
x ¼ −π. (c) Training points (red circles) and SWFN output
(dots) after training with NT ¼ 200 and NC ¼ 20, (d) as in (c) for
NT ¼ 200 and NC ¼ 200. (e) Training error (log scale) when
increasing NC at fixed nonlinearity χ ¼ 25, the learning threshold
at NC ¼ NT is evident. (f) Rank r of the transmission matrix H
varying the nonlinearity χ for NC ¼ NT ¼ 200, the threshold χ
for learning corresponds to r ¼ NT .
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from the training set (red circles) and the SWFN output
(dots) for NC ¼ 4000 and χ ¼ 500. The learning transition
is shown when varying NC for χ ¼ 500 in Fig. 3(d) and
varying χ in Fig. 3(d) for NC ¼ NT ¼ 4000. The strength
of the nonlinearity to interpolate a dataset grows with the
size. The various inputs x generate different ensembles of
nonlinear waves, as shocks, solitons, and rogue waves,
resembling recent experimental results [46]. The
Supplemental Material [49] reports further results.
Example 3, Boolean logic gate.—The SWFN can also

realize universal classical Boolean logic gates. We con-
sider, e.g., the NAND gate, which has two binary inputs
and one binary output (truth table in Fig. 4). We encode the
two inputs in the phases of two plane waves in the k space,
using the binary encoding above with NX ¼ 2. Figure 4
shows the resulting trained gate. The SWFN output is given
in the truth table and obtained at the machine precision
within an error of 10−15. The rectangular bias evolution is
shown in Fig. 4(a). The sampling points ξ1;2;3;4 at the
readout are also indicated. The input 00 superimposed to

the highly nonlinear bias produces the needed output
[Fig. 4(b)]. Many solitons and rogue waves are visible.
The neuromorphic nonlinear wave device learns the truth
table and performs the logical operation. Similar results are
obtained for other Boolean logic gates.
Conclusions.—We studied theoretically artificial neural

networks with a nonlinear wave as a reservoir layer. We
found that they are universal approximators, and developed
a new computing model driven by nonlinear partial differ-
ential equations. Following general theorems in neural
networks, we discovered that a threshold nonlinearity exists
for the learning process. When the dataset is large, the
threshold implies the generation of highly nonlinear proc-
esses as dispersive shocks, rogue waves, and soliton gases.
The rank of the transmission matrix is the relevant
parameter to assess the learning transition when varying
the channels and the degree of nonlinearity. Linear or
weakly nonlinear evolution may only learn small datasets.
The SWFN performance for commonly adopted datasets in
fitting and generalizing is comparable to current conven-
tional models. It is also robust with respect to noise in the
initial conditions and at the detection. Moreover, encoding
the input state in the initial condition of a nonlinear wave
equation enables significant scalability, as is known in
optics, where recent engineering of Ising machines has
demonstrated the computation with thousands of bits [35].
The robustness and convexity of the optimization arise
from the general properties of the extreme learning
machines, and related computational paradigms [3–10].
Other recent neural ordinary differential equations net-
works [54], also proposed to wave physics [55], need fine
tuning and inhomogeneous media, e.g., very accurate
control of the refractive index. This poses severe limitations
to the experimental realization, and on reprogramming
different functions. On the contrary, our model does not
require strict control of the propagation medium. This fact
makes quite feasible experimental tests into homogeneous
nonlinear systems.
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Our results may stimulate further theoretical work to
determine the best nonlinear phenomena for learning and
even their ability to generalize. The roles of external poten-
tials, randomness, and noise in quantum and turbulent
regimes are unexplored. Our framework holds in optics,
polaritonics, hydrodynamics, Bose-Einstein condensates,
and all the fields encompassingnonlinearity, alsowithmodels
different from the nonlinear Schrödinger equation. Our
analysis is the starting point for many other developments,
as cascading wave layers and conventional nodes. If building
heterogeneous deep computational systems with standard
neural networks andwaves provides computing advantages is
still an open question, but photonics speed up electronic
systems for machine learning. For these reasons, our theo-
retical results may foster new ultrafast computing hardware.
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