
 

Numerically Exact Treatment of Many-Body Self-Organization in a Cavity

Catalin-Mihai Halati ,1 Ameneh Sheikhan,1 Helmut Ritsch,2 and Corinna Kollath1
1Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany

2Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck, Austria

(Received 4 September 2019; accepted 17 July 2020; published 28 August 2020)

We investigate the full quantum evolution of ultracold interacting bosonic atoms on a chain and coupled
to an optical cavity. Extending the time-dependent matrix product state techniques and the many-body
adiabatic elimination technique to capture the global coupling to the cavity mode and the open nature of the
cavity, we examine the long time behavior of the system beyond the mean-field elimination of the cavity
field. We investigate the many-body steady states and the self-organization transition for a wide range of
parameters. We show that in the self-organized phase the steady state consists in a mixture of the mean-field
predicted density wave states and excited states with additional defects. In particular, for large dissipation
strengths a steady state with a fully mixed atomic sector is obtained crucially different from the predicted
mean-field state.
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Experimental progress to achieve strong coupling of
quantum matter to quantum light has opened exciting
possibilities. Realizations of such systems nowadays exist
both with ultracold atomic gases strongly coupled to optical
cavities [1–3] or the electron gas in solids coupled to THz
cavities [4–6]. These realizations have allowed one to study
self-organization phenomena and stabilize exotic phases by
the interaction with the quantum light [3,7,8]. The advan-
tages of the coupling of quantum matter to quantum light
are the fast self-organization dynamics due to the presence
of the cavity induced long-range interactions and the
stabilization of complex states via a dissipative attractor
dynamics. The cavity induced long-range interaction has
been observed in atomic gases with external optical lattice
potentials, where an extended Bose-Hubbard model has
been experimentally realized [9–11] and the effect of the
long-range interactions on the superfluid to insulator
transition [12–22] and the out-of-equilibrium dynamics
[23] have been analyzed.
Theoretical proposals use the attractor dynamics to

stabilize complex quantum phases [24–27], including
topologically nontrivial phases [28–35]. Together with
the recent achievements regarding the coupling of the
cavity field to the internal spin degrees of freedom of
atoms [36–38], it has opened the possibilities of the
realization of dissipation-induced instabilities [39–41]
and dynamical spin-orbit coupling [42,43].
Previous theoretical descriptions of coupled atomic

cavity systems were to a large extent performed using a
mean field decoupling of the cavity field and the atoms
[3,15,44], recent efforts have been made to go beyond the
mean field description [45–48]. The mean field approach
assumes the cavity field to be in a coherent state and the
atoms to be in the ground state of an effective model and

can therefore not take the atom-photon coupling correctly
into account. Above a certain threshold of the atom-cavity
coupling strength, the cavity field takes a finite value and
the atoms self-organize into a nontrivial state.
So far the exact coupling between the atomic and

photonic states has been included only for small systems
of one or two atoms, or two sites [49–54], noninteracting
two-level atoms [55–57], or in closed systems [58]. In this
work, we go beyond the mean field approximation and
investigate the combined atom-cavity system developing a
quasiexact numerical simulation based on matrix product
states (MPSs) and a many-body adiabatic elimination
approach valid for large photon losses. These methods
enable us to study the many-body aspects of the self-
ordering processes of the interacting bosonic atoms in the
optical cavity. The dissipative attractor dynamics couples
the atoms with the quantum light, even if one starts with a
decoupled state of atoms and photons. We investigate the
nature of the arising steady states for a wide range of
parameters. We find that the admixture of excited states
beyond the mean field steady state plays an important role
in a wide range of parameters. In particular, in the limit of
very lossy cavity mirrors the atomic sector approaches the
totally mixed state. Our findings question the nature of the
pure steady states and phase transitions previously pre-
dicted by the zero-temperature mean field theories. The
admixtures of excited states in the steady states demon-
strate a mixed state nature of the transition and of the steady
states.
We consider interacting bosons confined to a chain

coupled to a single cavity mode and transversely pumped
with a standing-wave laser beam. The Lindblad equation
for the density operator ρ is given by [3,15,59,60]
ð∂=∂tÞρ ¼ −ði=ℏÞ½H; ρ� þ ðΓ=2Þð2aρa† − a†aρ − ρa†aÞ,
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where a and a† are the annihilation and creation operators
for the photon mode. The term proportional to the dis-
sipation strength Γ takes into account the losses from the
cavity due to the imperfections of the mirror. The first term
represents the unitary evolution in which the excited
internal state of the atoms is adiabatically eliminated
[3,15,44], with H¼HcþHintþHkinþHac, Hc ¼ ℏδa†a,
Hint¼ðU=2ÞPL

j¼1njðnj−1Þ, Hkin¼−J
P

L−1
j¼1 ðb†jbjþ1þ

b†jþ1bjÞ, and Hac ¼ −ℏΩðaþ a†ÞΔ, Δ ¼ P
L
j¼1ð−1Þjnj.

The term Hc describes the cavity mode with a detuning
between the cavity mode and the transverse pump beam
δ ¼ ωc − ωp, in the rotating frame of the pump beam. The
operators bj and b†j are the bosonic annihilation and

creation operators of the atoms on site j and nj ¼ b†jbj.
L denotes the number of sites of the chain and the total
number of atoms is N. J is the tunneling amplitude and
U > 0 the repulsive on-site interaction of strength. We
assumed a commensurability of the cavity mode with twice
the periodicity of the lattice spacing within the chain. This
causes the atoms to see different cavity field amplitudes at
even and odd sides. As shown in Ref. [15], this leads to a
coupling of the cavity field to the total imbalance between
the odd and even sites of the chain, Δ, with the effective
pump amplitude Ω. In the following we use the scaled
coupling strength Ω

ffiffiffiffi
N

p
, in order to make our results

independent of the particle number. Whereas typically
already to determine the time evolution of the Bose-
Hubbard model alone is very involved, here an additional
complication is due to the large and, in principle, unlimited
dimension of the Hilbert space of the photonic mode.
This challenge is typically circumvented by adiabatically

eliminating the cavity field and using a mean field
decoupling for the atoms and the cavity mode [3].
Within this crude approximation one finds, that above a
certain thresholdΩMF;c

ffiffiffiffi
N

p
the cavity field hai takes a finite

value, either �αðΔÞ ¼ ½Ω=ðδ − iΓ=2Þ�Δeff and the atoms
self-organize into a density modulated pattern with even-
odd imbalance Δeff [61].
We develop here two approaches taking the exact atom-

cavity coupling into account. Both offer new insights into
the self-organization of interacting particles and quan-
tum light.
As the first approach, we develop a variant of the many-

body adiabatic elimination technique [62–64] including the
photonic mode. This approach is a perturbative approach
around the dissipation free subspace and allows us to get
analytical insights into the nature of the steady state in the
limit of large dissipation, i.e., ℏΓ ≫ ℏΩ, ℏδ ≫ J (see
Ref. [64] for details). In particular, the thermo-
dynamic limit can be investigated with this approach.
For finite interaction the steady state is given by ρmix ¼
ð1=N ÞPfnig jαðΔÞ; n1;…; nLihαðΔÞ; n1;…; nLj [64]. The
sum runs over all possible density configurations fnig with

N the total number of atomic configurations, and the
coherent state is set by αðΔÞ ¼ ½Ω=ðδ − iΓ=2Þ�Δ, where Δ
is taken in fnig. This state, ρmix, is very distinct from the
mean field state and is fully mixed in the atomic sector.
We will show using the second approach how the nature

of the long time behavior changes drastically with the two
extreme limits being a state close in nature to either the
mean field state, but with a certain admixture of excited
states, or to the totally mixed state ρmix. The second
approach (for details see Ref. [64]) is a numerically exact
treatment of the dissipative time evolution overcoming the
challenges of the long-range and dissipative nature of the
photon mode and the presence of interactions within the
atoms. This approach combines the Monte Carlo wave
function method [65,66] with the matrix product states
(MPSs) [67–69]. We overcome the challenge of the
globally coupled photon mode with a variant which
separates off the parts in which the photonic mode occurs
by a Trotter-Suzuki decomposition [70–72], and a dynami-
cal deformation of the MPS structure using swap gates
[46,72,73]. A similar variant of the MPS had been applied
in the context of spin-boson models [46,74], which have no
interaction between the spins. Our implementation uses the
ITensor library [75] taking good quantum numbers into
account [64]. If not stated otherwise, the results are taken
at long times tJ ¼ 49.75ℏ, in order to represent the steady
state values [64]. The convergence of our results is
sufficient [64] for at least 500 trajectories, the truncation
error goal of 10−12, the time step of dtJ=ℏ ¼ 0.0125 or
smaller, a cutoff of the local Hilbert space of the photon
mode between Npho ¼ 55 and Npho ¼ 10. The errors bars
in all figures represent the standard deviation of the
Monte Carlo average.
We start by analyzing the behavior of the photon number

[76] [Fig. 1(a)] in a regime favorable for the mean field
treatment. A smooth increase in the photon number across
the self-organization threshold predicted by mean field is
seen which does not show strong system size dependence.
However, above the threshold the values of our numerical
results remain below nMF. We will show later that this has
its origin in the admixture of states with a reduced photon
number. In order to get more insight into the obtained state,
we study the phase space distribution of the cavity field,
represented by the Q function, QðαÞ ¼ trðhαjρjαiÞ. We can
observe in Fig. 2(a), that for ℏΩ

ffiffiffiffi
N

p ¼ 1.12J QðαÞ has a
maximum at α ¼ 0 which resembles a coherent state with
zero photons. In contrast, above the threshold the Q
function develops two maxima [Fig. 2(b)] which separate
[Fig. 2(c)]. At large Ω

ffiffiffiffi
N

p
[Fig. 2(d)], both peaks in QðαÞ

deviate from the circular shape and further extend towards
the origin. This asymmetry signals the additional popula-
tion of states with a lower photon number than the average
photon number.
The atomic part of the steady state above the mean

field threshold, shows the characteristic staggered density
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wave in the density-density correlations. In Fig. 1(b)
we quantify this staggering, by the average contrast
by 1=ðL − 2ÞPj ðhnjnjþ2i − hnjnjþ1iÞ. Across the self-
organization threshold the contrast shows a strong increase
indicating the buildup of a density wave. However, above
the threshold our numerical results remain below the mean
field prediction.
The von Neumann entropy SvN in the quantum trajecto-

ries [Fig. 1(c)] [64,77] measures the entanglement present
in each trajectory. Since the presence of entanglement
typically limits the possible compression in the MPS

methods, the von Neumann entropy is one of the crucial
convergence parameters of these methods [72]. We find that
SvN is finite and saturates in time. Thus, we can be
confident that our approach captures the dynamics of the
system correctly. In Fig. 1(c) we see SvN computed between
the photon mode and the atomic chain seems to be
independent of Ω above the threshold and close to log
(2). We attribute this value to the coherent superposition of
the two states corresponding to a different sign of the
photon field in each trajectory.
We analyze the origin of the deviations from mean field

by considering the single quantum trajectories. The tra-
jectories stabilize at two different photon numbers. Thus,
we implemented a conditional averaging process, depend-
ing on the final photon number. The two obtained photon
number distributions [Fig. 2(e)] agree approximately with a
Poisson distribution with the corresponding average photon
number. In contrast to the full average, the expectation
value averaged over the first class of trajectories of the
photon number [Fig. 1(a)] and the staggering contrast
[Fig. 1(b)] agree well with the mean field prediction.
Thus, the state resembles a good charge density wave in
the first class of trajectories.
In contrast, we attribute the second class of trajectories to

states which have an additional defect due to the tunneling
of an atom. In the limit of perfect imbalance Δeff ¼ N,
these states would have only one atom at the “wrong” site
[Fig. 2(f)]. More generally, the reduced average value of the
photon number can [Fig. 1(a)] be well explained assuming
that the imbalance is reduced as Δ ≈ Δeff − 2. The photon
number distribution resembles a coherent state with this

FIG. 2. (a)–(d) The Q function for ℏΩ
ffiffiffiffi
N

p
=J ∈

f1.12; 1.79; 2.24; 3.35g, L ¼ 10, N ¼ 5, ℏδ=J ¼ 2, U=J ¼ 2,
ℏΓ=J ¼ 1. (e) Photon number distributions, pn ¼ trðhnjρjniÞ for
ℏΩ

ffiffiffiffi
N

p
=J ¼ 3.35, full average and with the trajectories averaged

separately depending on the final photon number. The continuous
lines show the Poisson distributions with the corresponding
average photon number. (f) Sketch of the atomic sector of states
with perfect imbalance, Δ ¼ N, and states with a reduced
imbalance due to a defect, Δ ¼ N − 2.

FIG. 1. (a) The scaled photon number, ha†ai=N, as a function
of ℏΩ

ffiffiffiffi
N

p
=J, for N=L ¼ 1=2, ℏδ=J ¼ 2, U=J ¼ 2, and

ℏΓ=J ¼ 1. The purple symbols (below the red symbols) represent
a time average for tJ ∈ ð44.75ℏ; 49.75ℏÞ. For the orange symbols
the trajectories are averaged depending on the final photon
number. The blue (green) curves represent the mean-field value
of the photon number for the imbalance Δeff ðΔeff − 2Þ. The
vertical dashed line marks ΩMF;c

ffiffiffiffi
N

p
. Lines joining the symbols

are guides to the eye. (b) The averaged contrast of the density-
density correlation as a function of ℏΩ

ffiffiffiffi
N

p
=J. (c) The von

Neumann entropy, SvN, as a function of ℏΩ
ffiffiffiffi
N

p
=J, for two

bipartitions of the system, between the cavity site and atomic
chain (bond l ¼ 1) and in the middle of the atomic chain (bond
l ¼ L=2þ 1). The circles represent the average over all trajecto-
ries and the squares the maximum among the trajectories, for
L ¼ 10. The dashed line represents log(2).
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lower photon number [Fig. 2(e)]. We can distinguish
between the two types of trajectories only for
ℏΩ

ffiffiffiffi
N

p
=J ≥ 2.68, as for lower pump strengths the indi-

vidual quantum trajectories are too noisy due to the low
photon number. The presence of the trajectories belonging
to two states different in nature strongly suggests that the
numerically observed steady state is a mixture of these two
dominant contributions. This is further confirmed by exact
diagonalization studies on small systems which show a
unique steady state being the mixture of the identified
states. Therefore, a crucial deviation from the mean field
predictions of a pure state transition is identified.
The deviations from the mean field predictions become

even more prominent in the regime of strong dissipation.
We attribute this to the admixture of states which corre-
spond to more and more defects until in the limit of very
large dissipation Γ the state ρmix is reached. We can observe
that for a large Γ the photon number does no longer agree
with the mean field value, but matches fairly well with the
value computed for ρmix [Fig. 3(a)]. In particular, whereas
the mean field approach predicts that at ℏΓ=J ≈ 11.6 a
transition back to the normal phase occurs, we do not
observe this transition, as the photon number remains finite
in the numerical results [64]. The agreement with the
adiabatic elimination results becomes very good also in the
distribution of the photon number [Figs. 3(b) and 3(c)].
Where at ℏΓ=J ¼ 7.5 still small deviations are present at
low number states, the distribution for ℏΓ=J ¼ 10 agrees
almost perfectly. TheQ function no longer has two maxima

at large Γ [insets of Figs. 3(b) and 3(c)], but only one
maximum at α ¼ 0 and a squeezed profile.
The same agreement of our numerical results and the

adiabatic elimination state can be seen in the staggered
contrast of the density-density correlations. For ρmix the
contrast in the staggering vanishes. Increasing Γ, we see
that the contrast approaches zero [Fig. 3(a)]. Thus, at large
values of the photon losses, the self-organized steady state
no longer resembles a staggered density wave state. It is a
mixture with a contribution from many atomic and pho-
tonic states, but where each atomic state fully determines
the state of the cavity field.
In the thermodynamic limit the adiabatic elimination

state, ρmix, predicts that the scaled average photon number
ha†ai=N goes to zero [64]. This would correspond to the
mean field predictions of having a transition back to an
empty cavity. However, even though the average value of
the scaled photon number vanishes, for the adiabatic
elimination state this is associated with the admixture of
more and more defect states. In the atomic sector the state
corresponds to a fully mixed infinite temperature state, as
already seen in the reduced average contrast of the density-
density correlations. Therefore also in the thermodynamic
limit the obtained state is very different from the expected
pure mean field state. Our findings raise the question
whether a phase transition is expected in the thermody-
namic limit. In particular, if such a transition exists, our
results suggest that the nature of this transition would not
correspond to a zero-temperature phase transition, but that
the transition would be dominated by the admixture of
excited states.
In summary, we performed the full quantum time

evolution towards the many-body steady state of a chain
of interacting bosonic atoms coupled to an optical cavity.
We showed that by including the coupling between the
atomic degrees of freedom and the photonic field one
finds important deviations from the mean field approach
of eliminating the cavity field. We saw that when the
dissipation strength is comparable with the other energy
scales in our system, the system is in a mixture where the
largest contribution is given by a density wave state. Other
states without density ordering become more prominent in
the mixture as we increase the dissipation strength, such
that in the large Γ limit the atomic sector is fully mixed, but
with a strong coupling between the atomic and the photonic
sector. This questions the previous picture obtained by
zero-temperature mean field theories which assume pure
state transitions and replace it by transitions of a mixed
state character.
We verified that in the experimental parameter regimes

of the current realizations Refs. [9–11,37] the predicted
mixed character of the transition and steady states occurs in
the considered one-dimensional systems. A first sign of
these mixed state transitions would be the finding of single
experimental runs which stabilize at different photon

FIG. 3. (a) The scaled photon number, ha†ai=N and
the averaged contrast of the density-density correlation,
ð1=L − 2ÞPj ðhnjnjþ2i − hnjnjþ1iÞ, as a function of ℏΓ=J using
time-dependent MPS (TMPS), mean-field (MF), and many-
body adiabatic elimination (AE). (b),(c) The full photon number
distribution, pn ¼ trðhnjρjniÞ for (b) ℏΓ=J ¼ 7.5 and
(c) ℏΓ=J ¼ 10. The insets present the corresponding Q function
determined by TMPS. The parameters are chosen to be L ¼ 10,
N ¼ 5, ℏΩ

ffiffiffiffi
N

p
=J ¼ 4.47, ℏδ=J ¼ 2, U=J ¼ 2.
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numbers. However, in order to uniquely detect the mixed
state character in the atomic sample, an additional observ-
able as the direct measurement of the even-odd-site
imbalance and density-density correlations of the atoms
would be desirable. This can by now be measured in optical
lattice setups in the absence of a cavity and we expect that
our findings motivate the experiments to implement this in
the cavity setups.
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