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We present a protocol to deterministically prepare the electromagnetic field in a large photon number
state. The field starts in a coherent state and, through resonant interaction with one or few two-level
systems, it evolves into a coherently displaced Fock state without any postselection. We show the feasibility
of the scheme under realistic parameters. The presented method opens a door to reach Fock states, with
n ∼ 100 and optimal fidelities above 70%, blurring the line between macroscopic and quantum states of the
field.
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Introduction.—Fock states are quantum states of the
electromagnetic field with a well defined number of
excitations. Such states are of significant theoretical and
experimental interest, with applications ranging from
protocols for quantum information to quantum metrology
[1], where the quantum properties of the field allow for
sensitivities greater than the achievable with classical
light [2]. All these applications benefit from a fast and
efficient generation of Fock states with a large number of
photons, a long standing goal for the quantum optics
community [3–11].
There are several theoretical proposals and experimental

implementations for generating Fock states across different
platforms, such as acoustic waves in resonators [8],
photonic wave guides [12–14] and superconducting circuits
[15–18]. In the context of cavity quantum electrodynamics
(CQED), Fock states can be generated by injecting one
quanta at a time into a cavity field [7,19], by resonantly
interacting a jet of atoms passing through the cavity leaving
the field in a upper-bounded steady Fock state [20,21],
or by realizing quantum nondemolition measurements
progressively projecting the field into a Fock state [22–26].
State of the art experiments generate Fock states with

either low photon number (n ∼ 7–15) [25,27,28], low
fidelity at large photon numbers (F > 80% for n ≤ 4
and F < 50% for n ≥ 4) [23], or low probability of success
after long convergence times (∼80% after ∼20 ms) [24],
evidencing the difficulty of the problem and the efforts
made to generate arbitrarily large number states.
In this Letter we propose a protocol to deterministicaly

generate large photon number states with significantly large
fidelities, depicted in Fig. 1 with a CQED example. We
consider a two-level atom that resonantly interacts with a
coherent state. We show that, for particular interaction

times, the field evolves into a Fock-like state, slightly
displaced in phase space. In the absence of decoherence,
this protocol allows for fidelities above 70% for n ∼ 100.
This process can be sped up by simultaneously interacting
two or more entangled atoms with the field. Under realistic
losses, this scheme could generate Fock states as large as
n ¼ 50 with a fidelity of 58% in a CQED system [29] and a
Fock states with n ¼ 100 with a fidelity above 60%
considering the state of the art in circuit QED [30–32].
Finally, we discuss the main characteristics and results of

FIG. 1. Schematic of the proposal. One or two (entangled) two-
level atoms interact with a coherent state trapped in a cavity. The
field, represented here by its Wigner function, evolves from a
coherent state to a macroscopic superposition (after an interaction
time τC) and then into a Fock-like state (after an interaction time
τF). The timescale of the evolution is set by coupling strength g.
The final state of the field approaches to a Fock-like state, despite
the cavity and atomic decay, given by the rates κ and Γ.
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the protocol, and give an outlook of some open questions
and future possibilities.
Theoretical model.—The interaction of an atom with the

electromagnetic field inside a cavity is well described by
the Jaynes-Cummings Hamiltonian [33]

Ĥ ¼ ℏω0

2
σ̂z þ ℏωcâ†âþ ℏgðâσ̂þ þ â†σ̂−Þ; ð1Þ

where ω0 and ωc are the atomic and field frequencies,
g ¼ Ω0=2 is the coupling frequency, â and â† are the field
operators, and σ̂þ and σ̂− are the raising and lowering
atomic operators. The evolution under resonant interaction
(ωc ¼ ω0) of the atom-field compound state ρ is deter-
mined by the master equation [1]

ℏi
dρðtÞ
dt

¼ ½Hint; ρðtÞ�
−
κ

2
ðnth þ 1Þ(â†âρðtÞ þ ρðtÞa†a − 2aρðtÞa†)

−
κ

2
nth(aa†ρðtÞ þ ρðtÞaa† − 2a†ρðtÞa)

−
Γ
2
ðnth þ 1Þ(σ̂þσ̂−ρðtÞ þ ρðtÞσ̂þσ̂− − 2σ̂−ρðtÞσ̂þ)

−
Γ
2
nth(σ̂−σ̂þρðtÞ þ ρðtÞσ̂−σ̂þ − 2σ̂þρðtÞσ̂−); ð2Þ

where Ĥint ¼ ℏgðâσ̂þ þ â†σ̂−Þ is the Hamiltonian in the
interaction representation, κ and Γ are the cavity and the
atomic decay rates, respectively, and nth is the average
number of thermal photons.
We assume that the field is initialized in a coherent

state of amplitude α and the state of the system is initially
separable, meaning ρð0Þ ¼ jψð0Þihψð0Þj with jψð0Þi ¼
jϕatijαi.
The compound state initially factorizable, generally

evolves into an entangled state. For a particular evolution
time τC ¼ 2π

ffiffiffi

n̄
p

=Ω0, with n̄ ¼ jαj2 being the average
number of photons, the atom and the field get disentangled
again and the field is found in a a catlike state (see Fig. 1)
[34,35]. Previous works have studied this system within
such a time regime [36,37], nonetheless the exact evolution
of the field at longer times has remain unexplored.
If we let the system interact for longer times we see that

the Wigner function of the field temporarily evolves into a
distribution that, at specific times t ¼ τF, resembles that of
a Fock state [38] (see Fig. 1), but slightly displaced in phase
space [39]. At t ¼ τF, the field and the atom become almost
disentangled again, producing a field state that is nearly
pure (purity ≈80%) [38]. By controlling the interaction
time and injecting the proper field amplitude and phase to
correct for the remnant coherent displacement, one can
deterministically obtain a target Fock state.

The more commonly used figure of merit to quantify
how close is the generated state ρfðtÞ ¼ Trat½ρðtÞ� to an
ideal Fock state with n photons (ρn) is the fidelity
F(ρfðtÞ; ρn) ¼ ½Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffi

ρn
p

ρfðtÞ ffiffiffiffiffi

ρn
pp Þ�2 [40]. Since the

fidelity is not a proper metric, we characterize how similar
both states are by calculating the function 1 − δ(ρfðtÞ; ρn),
where δ(ρfðtÞ; ρn) ¼ 1

2
Tr(jρfðtÞ − ρnj) is the trace dis-

tance [41]. Although we use one minus the distance trace
for our calculations, we present our results in terms of the
fidelity to provide a common-ground comparison with
previous
works.
We numerically calculate the evolution of the field

state ρfðtÞ under Eq. (2) and search for an optimum time
t ¼ τF that maximizes the value of 1 − δ(ρfðtÞ; ρn) for a
target Fock state ρn. Because the field state evolves to
something close to a Fock state but with a small displace-
ment DðβÞð¼ Exp½βa† − β�a�Þ, we applied a coherent
displacement −β after the field interacted with the atom
[18,23,42,43]. We perform a numerical evaluation of
the function 1 − δ(ρfðt; βÞ; ρn) and optimize it over two
parameters, namely t and β, obtaining the optimal inter-
action time τF and its corresponding optimum coherent
displacement βF.
Results.—We first consider the case of a single atom

initially in the excited state interacting with a resonant
coherent field in the absence of any decoherence mecha-
nism. Figure 2(a) shows, on the left axis, the maximum
achievable 1 − δ(ρfðt; βÞ; ρn) between the obtained field
(displaced by the proper β in each case) and a Fock state
with n photons as a function n. The calculation is
repeated for different initial coherent states with average
photon number jαj2 ¼ n̄. We observe that the optimum
generation of a Fock state happens at n ¼ n̄, meaning
that the process benefits from keeping the same average
number of excitations in the field. (An example of the
energy conservation throughout the full evolution of the
system is presented in the Supplemental Material [38].)
For those cases, the fidelity can be higher than 75% for
n ≤ 50 as shown in the right axis of Fig. 2(a). Notice that
the points plotted for the fidelity (with n ¼ n̄) correspond
to the peaks of distributions like those shown in the 1 − δ
plots as a function of n for a fix n̄. Figures 2(b) and 2(c)
show the elements of the density matrix for the generated
Fock-like states with n ¼ 10 and n ¼ 60, respectively. We
observe a small remnant in the coherences that explains
the obtained fidelities despite negligible population of
adjacent number states.
Collective atomic effects increase the effective interac-

tion strength, hence shortening the necessary interaction
times to generate a target Fock state. Only a few initial
atomic states lead to the formation of a Fock-like state.
These are linear superpositions of the eigenstates jϕλii
of the collective atomic operator ŜðNÞ

x ¼ P

N
i σ̂ðiÞx , i.e.,
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ŜðNÞ
x jϕλii ¼ λijϕλii with eigenvalues λi, where σ̂ðiÞx is the

Pauli matrix operating on the i-th atom and N is the total
number of atoms. In particular, the initial atomic states that
lead to a Fock-like states are those of the form jϕati ¼
1=

ffiffiffi

2
p ðjϕλ1i þ jϕλ2iÞ, such that λ2 ¼ −λ1. The formation of

a Fock state speeds up by a factor of N when λ1 ¼
maxfλig.
Figure 2(d) shows one minus the trace distance of

the generated Fock state, as a function of n, for one,

two, and three atoms. The initial atomic states are
jϕati ¼ fje1i; ð1=

ffiffiffi

2
p Þðjg1g2i þ je1e2iÞ; 1

2
ðje1e2e3i þ

je1g2g3i þ jg1e2g3i þ jg1g2e3iÞg, respectively, where gi
and ei represent the ith atom being in the ground or excited
state, respectively. We see that increasing the number of
atoms has a detrimental effect on the fidelity of the final
Fock state, because the purity of the field gets compromised
when a larger fraction of the total coherence of the system
remains in the atomic subsystem [38]. Considering this,
and the technical difficulties of realizing entangled states of
many particles, we limit our analysis to the case of one and
two atoms.
Figure 3(a) shows the optimum times τF in units of a

single-atom or single-photon Rabi period as a function of
the target number of photons n, for one and two atoms
(same initial atomic states as before). The optimal evolution
time τF follows even multiples of a ð ffiffiffi

n
p þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p Þ

dependence [38], represented by segmented shaded lines.
The multiple branches appear because the Fock-like state is
periodically generated throughout the evolution of the
system, but with slightly different fidelities. The maximi-
zation of the fidelity leads to what looks like jumps of τF
between different branches [38]. Figure 3(b) shows the
displacements βF necessary to generate the Fock-like state
with the largest fidelity as a function of n. In our case the
displacement is always real, since we begin the interaction
with a real α. If α were complex, then the appropriate
displacement will have the same complex phase than α. The
role of the coherent displacement DðβFÞ is to compensate
for the energy difference between the initial or target state

FIG. 2. (a) The left blue axis shows one minus the trace distance
between the obtained state and jni as a function of n, where a
single two-level atom initially in jei interacts with a coherent field
α with different initial average number of photons jαj2 ¼ n̄ ¼
f5; 10; 20; 50g. The right red axis shows the obtained fidelity for
n ¼ n̄ as a function of n. (b),(c) Density matrices of the generated
Fock-like states with n ¼ 10 and n ¼ 60, respectively. (d) One
minus the trace distance between the obtained state and jni as a
function of n for a field that starts in a coherent state jαj2 ¼ n̄ ¼
10 and interacts with N ¼ f1; 2; 3g atoms. The insets on top of
every curve represents the Wigner functions and fidelity of the
obtained field state at n ¼ n̄.
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FIG. 3. (a) Optimum times τF to generate a Fock state jni as a
function of n, starting from a coherent state jαj2 ¼ n̄ ¼ n, for the
case of a single atom in je1i (blue circles) and two entangled
atoms in ðje1e1i þ jg1g1iÞ=

ffiffiffi

2
p

(red triangles). The vertical axis is
in units of resonant Rabi periods. (b) Displacements βF for the
states achieved in (a) as a function of n.
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and the final state of the field after energy exchange with
the atoms [38].
Experimental feasibility in CQED.—We analyse our

protocol for typical experimental parameters in CQED
with Rydberg atoms [25] (see Fig. 1). We consider
decoherence from cavity and atomic losses, and thermal
photons (Eq. (2)) to be κ ¼ 1=Tc, with Tc ¼ 130 ms the
cavity damping time, Γ ¼ 1=Ta, with Ta ¼ 30 ms the
atomic lifetime, nth ¼ 0.05 (at 0.8 K) [44], and a vacuum
Rabi frequency of Ω0 ¼ 2π × 49 kHz [1]. The atoms are
sent through the cavity as a jet, and the interaction time is
controlled by the atomic velocity. Figure 4(a) shows the
optimum times τF as a function of n, for one and two atoms.
The decay rate of a Fock states with n photons is κn [27],
represented by the dashed line and a shaded area in
Fig. 4(a). The extension of the scheme to larger photon
number states or larger number of atoms is truncated by
decoherence effects, and its exploration is limited by our
computational capabilities. Figure 4(b) shows the maxi-
mum fidelity for one and two atoms as a function of the
target Fock state, both in the ideal case and in the presence
of decoherence. Notice that in the presence of decoherence
one benefits of using two atoms for target Fock states

above n ¼ 50. The obtained Fock-like states are robust
against imperfections in both the evolution time τF and
the coherent displacement βF, where typical experi-
mental errors produce negligible changes in the state
fidelity [38,42].
State of the art of CQED experiments with Rydberg

atoms can reach a maximum interaction time of 20 Rabi
periods [45]. Although experimental improvements are
being made on that regard, this presents an opportunity
to study protocols for state preparation of a few entangled
atoms to speed up the state generation process.
We observe that even for the simplest of the previously

described cases, meaning a single excited atom interacting
with a coherent state, it is possible to achieve larger
fidelities by conditioning the field to a particular post-
selected atomic state [1]. As a comparison, for an initial or
target state n̄ ¼ n ¼ 10 and a single atom we obtain a
fidelity of 92% upon measuring the atom in the excited
state, compared with F ¼ 84% in the unprojected case.
A careful analysis of optimal projections on the atomic
subsystem goes beyond the scope of this Letter, but it opens
an opportunity to improve the presented scheme.
Our protocol for Fock states generation can be easily

extended to other platforms. Circuit-QED systems are
particularly interesting, since the interaction time between
the artificial atom and the field is arbitrarily large. Con-
sidering parameters of state of the art circuit-QED experi-
ments [30–32], it is possible to generate a Fock state near
n ¼ 100 with 60% fidelity with a single qubit, close to the
performance of the protocol without decoherence.
Analysis and discussion.—We observe that the gener-

ation of Fock-like states requires two physical phenomena:
nonlinearity and interference. Given that the effective Rabi
frequency depends on the photon number as Ω ¼ Ω0

ffiffiffi

n
p

,
the probability distribution of the coherent state will be
distorted upon unitary evolution, resulting in the negativity
of its Wigner function. This is a particular case of a
nonlinear evolution generating a non-classical state [46].
On the other hand, when the interacting two-level system is
in a superposition, the field evolves as such, allowing for
interference effects among probability amplitudes of the
field overlapping in phase space (see video in [38]). The
nonlinear n̂ dependence and the ability to evolve the field in
a superposition, generating Fock-like states, are not unique
features of the Jaynes-Cummings model. For example,

the effective interaction Hamiltonian Heff ¼ g=2
ffiffiffi

n̂
p

ŜðNÞ
x

[36,47] can also generate Fock-like states. While the non-
linearity-plus-interference picture explains the generation
of highly nonclassical states, it does not answer why we can
obtain Fock-like states in particular or why these have such
large and robust fidelities. Nonetheless, it is not too
surprising that the distribution of a field unitarily evolved
to have a large phase uncertainty will resemble that of a
Fock state. The most remarkable aspect of the presented
protocol is the fact that a macroscopically intense classical
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FIG. 4. (a) Optimum times τF to generate a Fock state jni as a
function of n, starting from a coherent state jαj2 ¼ n̄ ¼ n, for the
one and two atom cases (see Fig. 2). The vertical axis is in units of
resonant Rabi periods. Colored dashed line corresponds to the
multiple branches of the solutions for both cases [38]. The black
dashed line represents the decay time of a Fock state of n photons
inside the cavity. (b) Fidelities for the states generated in (a) as a
function of n. Continuous lines denote the ideal lossless system,
and dashed lines denotes the system under realistic decoherence
mechanisms in CQED.
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field can express its truly granular (quantum) nature upon
interaction with a quantum two-level system.
The presented scheme could be implemented across

different QED platforms. Its limiting factors is the
shortest time scale for the decoherence. Since the system
needs to undergo several Rabi cycles before the fields
ends in a Fock-like state, we suspect that the necessary
condition to succeed is that of strong coupling, where
g ≫ nκ, Γ.
Conclusions.—We have presented a protocol to deter-

ministically generate large photon number state within
QED systems. The field starts in a coherent state and
evolves to a Fock-like state upon resonant interaction
with a two-level system, without need of a postselective
procedure. The intrinsic nonlinear evolution of the
field plus interference effects in the photon number
probability amplitudes generate a state of the field that
is well described by a Fock state coherently displaced in
phase space. After correcting for such displacement, we
obtain a Fock-like state with optimal fidelities as large
as 71% for n ¼ 100. We show how this process can be
sped up aided by a second two-level system, but
compromising the fidelity of the final state. The scheme
is shown to be feasible for current state-of-the-art
experiments. Although our analysis is mainly focused
on a CQED system, it can be extended to other QED
platforms. We expect that the implementation of the
presented protocol will have a significant impact on
quantum metrology applications.
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