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We explore the ground states of a few dipolar bosons in optical lattices with incommensurate filling. The
competition of kinetic, potential, and interaction energies leads to the emergence of a variety of crystal state
orders with characteristic one- and two-body densities. We probe the transitions between these orders and
construct the emergent state diagram as a function of the dipolar interaction strength and the lattice depth.
We show that the crystal state orders can be observed using the full distribution functions of the particle
number extracted from simulated single-shot images.
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The realization of Bose-Einstein condensates (BECs)
of dipolar atoms [1–6] and molecules [5,6] provides new
perspectives to study phase transitions in correlated quan-
tum systems [7,8]. The anisotropic and long-ranged dipole-
dipole interactions lead to a plethora of new phenomena
absent in conventional BEC, e.g., directional elongation
[9–11] and geometric stabilization [9,10,12–14]. A lower
dimensionality results in additional physical features:p-wave
superfluidity [15,16], Luttinger-liquid-like behavior [17–20],
and anisotropy in curved geometries [21–23].
Atoms in optical lattices are experimentally very tunable

and serve as quantum simulators for condensed matter
systems [24–39]. Few-particle systems especially provide
an experimental bottom-up access to many-body physics
[40–42]. The interplay between anisotropic long-range
and contact interactions result in the emergence of new
phases beyond the usual superfluid (SF) and Mott insulator
(MI) phases. A density-wave phase (DW) [43–46],
characterized by an alternate filling of lattice sites and a
supersolid phase [45,47–51], with coexistent DW and
superfluidity were observed. Exotic phases such as
Haldane insulators [44,52], checkerboards [43,53], and
Mott solids [54] were predicted. Remarkably, a crystal
state (CS) emerges for dominant dipolar interactions
[17,21,22,55–61].
In this Letter, we establish protocols to detect the

remarkable plethora of crystal orders emerging in lattices
incommensurately filled with dipolar bosons. The physics
of the crystal state cannot be addressed using the Hubbard
model [62] and requires an ab initiomany-body description
[60,61]. We study ground states of a few dipolar atoms in
one-dimensional lattices by numerically solving the full
Schrödinger equation with the multiconfigurational time-
dependent Hartree method for bosons [63–68].

LikeRefs. [69–77], we explore the full range of interaction
strengths to observe distinct crystal orders, emergent due to
the competition between kinetic, potential, and interaction
energies. Our main finding is that all these crystal orderings
and, thereby, the phase diagram can be unequivocally
characterized using the full distribution functions (FDF) of
the position-dependent particle number operator extracted
from absorption or single-shot images [60,78–80]. We
emphasize that our results are experimentally feasible as
single-shot images with single-atom sensitivity for few-atom
systems have been observed [81,82]. With our present finite-
size considerations, we cannot make claims about the true
quantum phases in the thermodynamic limit. However, we
demonstrate that the crystal orders are valid for the state
diagram, the finite-size analog of the thermodynamic phase
diagram for different lattice sizes, particle numbers, and
different types of boundary conditions [83].
Consider polarized, dipolar bosons in a quasi-one-

dimensional lattice potential having tight transversal
confinement of characteristic length a⊥. The N-body
Hamiltonian reads

H ¼
XN
i¼1

½Ti þ VolðxiÞ� þ
X
i<j

V intðxi − xjÞ: ð1Þ

Here, Ti is the kinetic energy of the ith boson,
Vol ¼ V sin2ðκxÞ is the lattice potential with a depth V
and a wave vector κ. Hard-wall boundaries at x ¼ �Sπ=2κ
restrict the lattice to S sites. V intðxi−xjÞ¼ðgd=jxi−xjj3þαÞ
is the (purely) dipolar interaction of strength gd [84]. The
transversal confinement introduces the short-scale cutoff
α ≈ a⊥3 [56,85–87]. All quantities are given in terms of
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recoil energy [88]. We consider a cutoff α ¼ 0.05, N ¼ 8
bosons, and S ¼ 5 lattice sites [89].
We now discuss possible crystal-state orderings using

the density ρðxÞ ¼ hΨjΨ̂†ðxÞΨ̂ðxÞjΨi as a function of the
interaction strength gd [Fig. 1(a)]. For gd ¼ 0, we obtain a
pure SF. The incommensurate setup implies the absence of
a pure MI; as gd increases, we find anMI coexisting with an
SF (SMI) [90]. Observed from ρðxÞ: the two outer wells
have a smaller population than the central wells; N ¼ 5
atoms in the MI coexist with N ¼ 3 bosons in the SF
fraction. The SF localizes in the central wells to minimize
the kinetic energy with hard-wall boundary conditions.
The crystal transition occurs at gd ≈ 0.8: due to their

repulsive dipolar interactions, the bosons avoid each other
and save interaction energy minimizing their overlap. The
density [Fig. 1(a)] splits in the doubly occupied central
wells - a signature of the crystal transition. The crystal
state’s site occupations are 1,[11],[11],[11],1, where [11]
denotes the two-hump density in doubly-occupied lattice
sites. Since the double occupation of the three central wells
results from the kinetic energy in the Hamiltonian, we term
this state “kinetic crystal state” (KCS).
A further increase in gd makes the interaction energy

overcome the kinetic energy; the double occupation of
adjacent sites is energetically unfavorable [Fig. 1(a)]: instead
nearest and next-nearest neighbors are now doubly
occupied in a density-wave-ordered structure at gd ≳ 3.
The “standard” density-wave-order for our system would
have the occupations 2,1,2,1,2 (Ref. [46]). Due to the strong
dipolar interactions, the bosons’ density in doubly occupied
sites is spatially split and a density-wave crystal state

(DWCS) with occupations [11],1,[11],1,[11] results. The
DWCS represents a completely new crystal order, featuring
the coexistence of DW arrangement and crystallization. The
KCS and the DWCS are possible crystal orders and hence a
subset of a general CS. Here, and henceforth, we use the
label CS for a crystal state in either the KCS or the DWCS
arrangement. See Ref. [83], Sections S4, S5, and S9, for
finite-size and boundary-condition effects on the crystal
orders; importantly, the KCS fades away for a larger system
size while the DWCS and CS prevail.
Various crystal arrangements of the atoms with respect to

the lattice can be obtained from a purely classical model
([83], Section S4). However, many-body calculations are
necessary to capture the quantum properties of the crystal
states: many modes contribute to the quantum field of the
crystal states [Fig. 1(b)]—their properties are only acces-
sible via a realistic model of the many-body wave function.
Moreover, the SF and MI are purely quantum states and the
transition from such a noncrystal to a crystal order cannot
be obtained from a classical model.
To explain the emergent many-body properties and the

localization in the observed states, we discuss the two-body
density ρð2Þðx1; x2Þ ¼ hΨjΨ̂†ðx1ÞΨ̂†ðx2ÞΨ̂ðx1ÞΨ̂ðx2ÞjΨi for
characteristic values of gd [Figs. 2(a)–2(d)]. Unlike the
corresponding particle arrangement [one-body density,
Fig. 1(a)], the analysis of the two-body density exhibits
the many-bodiness of the crystal state: the two-body
densities in Figs. 2(b)–2(d) - unlike for classical, semi-
classical, and mean-field models - is not a product of one-
body densities.

FIG. 1. (a) One-body density ρðxÞ as a function of the dipolar
interaction strength gd for a lattice depth V ¼ 8. For the SMI,
gd ≲ 0.8, the density exhibits a fivefold structure. As gd increases,
the density develops a twofold splitting in the doubly-occupied
central three wells displaying the onset of SMI → KCS transition.
For even larger gd, the density transitions to a pattern with
alternating single and double occupations signifying the DWCS
transition. See the Supplemental Material [83], Section S2, for
ρðkÞ in momentum space. (b) Natural occupations (plotted
cumulatively) as a function of gd. For small gd, the SF fraction
results in the dominance of λ1. With increasing gd, the fragmen-
tation increases as several λk>1 become significant. Beyond the
SMI → KCS transition, the system is maximally fragmented with
eight almost equally contributing eigenvalues.

FIG. 2. (a)–(d) Two-body density ρð2Þðx1; x2Þ. (a) gd ¼ 0.0005:
the pure SF shows a nearly square-lattice-like equispaced dis-
tribution. (b) gd ¼ 0.01: the localization of bosons in the SMI
results in a diagonal depletion. (c) gd ¼ 1.5: for KCS, a
correlation hole develops; the probability to find two bosons
at the same position vanishes. (d) gd ¼ 6.0: the DWCS shows a
completely split but nonuniform density with density-wave order.
(e)–(h): second-order spatial correlation function [jgð2Þðx1; x2Þj].
(e) gd ¼ 0.0005: the bosons are significantly coherent for the SF.
(f) gd ¼ 0.01: reduction of off-diagonal coherence for the SMI.
(g) gd ¼ 1.5: diagonal coherent blocks split as the bosons
crystalize at the KCS. (h) gd ¼ 6: completely split coherent
blocks centered at each boson position in the DWCS.
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For small interaction strength (gd ¼ 0.0005) in the SF the
maxima of ρð2Þ are nearly uniformly distributed at positions
ðx1; x2Þ in the vicinity of the minima of the lattice [Fig. 2(a)].
For larger interaction, gd ¼ 0.01, a partial depletion along
the diagonal (x1; x2 ≈ x1) of ρð2Þ occurs. This depletion
results from the formation of an MI that coexists with an SF
[Fig. 2(b)]. At stronger interactions, gd ¼ 1.5, the bosons in
the doubly occupied central wells crystallize forming the
KCS. The diagonal ρð2Þðx1; x1Þ ≈ 0 is completely depleted: a
correlation hole is formed, the probability of detecting two
bosons at the same position vanishes. The split maxima in
the three central wells result from the on site interaction-
driven splitting 2 → ½11�. For gd ¼ 6, in the DWCS
[Fig. 2(d)], a split intersite structure of the two-body density
ρð2Þ is present for every odd site of the lattice potential. The
diagonal depletion is wider compared to the KCS [Figs. 2(c)
and 2(d) for x1 ≈ x2]. The nonuniform distribution of the
maxima of ρð2Þ heralds the DWCS.
For extremely strong interactions gd > 50 (not shown),

the DWCS transforms into a pure CS [60,61]. To minimize
the interaction that overwhelms the potential, the distribu-
tion of the maxima of both ρðxÞ and ρð2Þðx1; x2Þ becomes
equidistant ([83], Section S3). This pure CS differs from the
SMI, KCS, and the DWCS, because the distribution of
maxima of the densities is not dictated by the minima of the
lattice potential (see [83], Sections S4, S5, S9) for other
possible crystal orders at different particle numbers, lattice
sizes, and boundary conditions.
To explore the coherence properties of the

emergent states, we analyze the second-order spatial
(Glauber) correlation functions [91,92], defined as
gð2Þðx1;x2;x01;x02Þ¼ρð2Þðx1;x2;x01;x02Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx1Þρðx01Þρðx2Þρðx02Þ

p
and it quantifies the second-order coherence in the system.
Figures 2(e)–2(h) display the diagonal jgð2Þj≡jgð2Þðx1;x2Þj¼
jgð2Þðx1;x2;x01¼x1;x02¼x2Þj.
In the SF (gd ¼ 0.0005), the system is delocalized and

shows substantial coherence [jgð2Þj ≈ 1 almost throughout
Fig. 2(e)]. For the SMI, gd ¼ 0.01, a partial localization in
the lattice sites reduces the off-diagonal coherence, reflected
in the diagonal anticorrelation blocks jgð2Þj < 1, Fig. 2(f).
For gd ¼ 1.5 (KCS), the diagonal coherent blocks split as
the bosons crystallize. The (anti)correlation regions are now
centered on each boson [Fig. 2(g)]; this also persists for the
DWCS [gd ¼ 6, Fig. 2(h)], showing the complete localiza-
tion and decoherence of atoms in crystal states. These
coherence properties are inherently a quantum many-body
effect absent in mean-field approaches ([83], Section S8).
The two-body correlation functions and densities in Fig. 2,
as expected for multiple significant eigenvalues of the
reduced one-body density matrix [Fig. 1(b) and below]
demonstrate the appealing many-body structure of crystal-
lized bosons.
The SMI→KCS and KCS → DWCS transitions depend

on gd and V; we construct the state diagram for these

parameters. The SMI → CS transition can be determined
from a crystal state order parameter Δ [60],

Δ ¼
X
k

�
λk
N

�
2

: ð2Þ

Here, the λks are the k eigenvalues (natural occupations)
obtained from diagonalizing the one-body reduced density
matrix,

ρð1Þðx; x0Þ ¼ hΨjΨ̂†ðxÞΨ̂ðx0ÞjΨi ¼
X
i

λiφ
�
i ðxÞφiðx0Þ; ð3Þ

together with the eigenfunctions φiðxÞ (natural orbitals).
The system is condensed if one natural occupation is

macroscopic (λ1 ≈ N) [93] and fragmentedwhenmultiple λks
aremacroscopic [94,95]. Figure 1(b) shows λk as a function of
gd. For 0 < gd < 0.002, the system is a condensed SF and
λ1 ≈ N. For 0.002 < gd < 0.8, the system fragments and
multiple λk>1 gradually increase for increasing interactions.
At gd ≳ 0.8, theCS is reachedwithN natural orbitals (almost)
equally populated [Fig. 1(b)]. It is a hallmark of the many-
body properties of the CS: the high-order density matrices
[96], ρðpÞðp > 1Þ, are not a product of densities ρð1Þðx; x0Þ
[Fig. 2]. Thus, observables such as the correlation functions
and the full distribution functions (see below) require amany-
body model while classical models fail, see Section S5 [83].
The maximal value of the crystal order parameter,

Eq. (2), is obtained for the SF with Δ ¼ 1, while the CS
is identified by the minimum value, Δ ¼ ð1=NÞ ¼ 0.125,
hence, characterizing the CS transition. Figure 3(a) shows
the value of Δ as a function of gd and V, which clearly
displays the transition from the SMI to the CS.
For small gd and V, the bosons are condensed into a SF

and Δ ≈ 1. With increasing gd and/or V, the SMI forms;
fragmentation and—consequently—a diminution of Δ is
seen. A further increase of gd (>0.8) decreases Δ gradually
towards its minimum value (Δ ¼ 0.125) for all values of V
marking the onset of the KCS. When Δ reaches its
minimum, the maximally (eightfold) fragmented CS is
reached; the orderings of the CS, analyzed in the following,
are the KCS or the DWCS. Importantly, by analyzing Δ
alone, the KCS → DWCS transition cannot be identified.
To identify the KCS → DWCS, we use the population

imbalance of even (e) and odd (o) sites, defined as

Θ ¼ 1

N

X
e;o

hnoi − hnei; ð4Þ

with hnei and hnoi as their, respective, populations. Θ is
maximal for the density modulation corresponding to the
DWCS. Figure 3(b) shows Θ as a function of gd and V. For
small values of gd, the localization of the atoms in the
central wells leads to small values of Θ. For larger gd, Θ
decreases because of the uniform density of the SMI. As gd
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increases further, Θ reaches its maximum value for the
KCS → DWCS transition, which shows a stronger depend-
ence on V compared to the SMI → KCS transition. A
shallower lattice potential favors the KCS → DWCS tran-
sition at lower gd while deeper lattices require larger gd,
Fig. 3(b). The order parameters Δ and Θ quantify state
diagram of any finite-size system as they are applicable for
any finite N and S.
We now propose a general experimental protocol to

detect all emergent states and thereby the state diagram
of crystal orders using standard imaging [81,82]. These
single-shot measurements correspond to a projective meas-
urement of the wave function. Ideally, the images contain
an instantaneous sample of the position of all N particles
distributed according to the N-particle probability dis-
tribution jΨj2. Here, we compute a set of single-shot
measurements from our MCTDH-B ground state wave
functions [78–80,97] and evaluate the full distribution
functions of the position-dependent particle number oper-
ator, i.e., we quantify the probability PnðxÞ to detect n
particles at positions x [Figs. 3(c)–3(e)].
In the delocalized SMI, several particles can be detected

in the same site with a significant probability: PnðxÞ are
nonzero for n ≤ 2. When the KCS is reached at gd ≈ 0.8,
the bosons become completely localized resulting in
Pn≥2ðxÞ ≈ 0. The transition from the SMI via the KCS
to the DWCS with increasing interaction strength gd is
characterized unequivocally through the analysis of the full
distribution functions P0ðxÞ, P1ðxÞ and P2ðxÞ. While P0

and P1 exhibit the distribution patterns of the KCS and the
DWCS, P2 → 0 signals the bosons’ complete isolation in
crystal states—independent of the crystal ordering. The

results of Figs. 3(c)–3(e) show a good agreement with
the ones of Figs. 1(a) and 3(a) and 3(b), demonstrating the
KCS and DWCS transition for the same values of gd. The
simultaneous presence of density-wave order in P0=1 and
isolation, Pn≥2 → 0, can thus experimentally identify the
KCS and the DWCS (see [83], Section S5, for Pn≥3 ≈ 0).
The FDF as shown in Figs. 3(c)–3(e) is thus sufficient for
detecting all the crystal orders and emergent states and,
thereby, the order-parameter and state-diagram. Since the
FDF has been experimentally implemented [98], our
protocol thus provides a general and experimentally fea-
sible way to explore the plethora of crystal orders of dipolar
bosons in a lattice.
We emphasize that our crystal-order detection protocol

using FDFs makes no reference to N or S: it thus represents
a viable method for any finite-size system.
We note that finite-size cold-atom systems necessarily

exhibit pinning, thus precluding difficulties arising due to
sliding phases that may be seen for periodic boundary
conditions ([83], Section 9). Moreover, the required accu-
rate single-shot imaging techniques with high detection
efficiency and close-to-single-atom detection are available
for ultracold atoms [81].
An alternative experimental protocol using the variance

of single-shot measurements to quantify the order param-
eter Δ [60,79] intertwined with a binning of them to
quantify the even-odd imbalance Θ is described in [83],
Section S7.
Beyond the static properties, the exploration of collective

excitations like roton modes which have been theoretically
predicted [46,99–102] and experimentally observed
[103–105] would be of further interest.

FIG. 3. Characterization and detection of the KCS and DWCS. (a) Crystal order parameter Δ as a function of the interaction strength
gd and lattice depth V. The maximum, Δ ¼ 1, corresponds to the condensed SF. The SMI is revealed by intermediate Δ < 1. The
minimum value,Δ ¼ 0.125, corresponds to a CS thereby characterizing its formation. (b) Imbalance parameterΘ as a function of gd and
V. Both SMI and KCS correspond to low values of Θ, while the maximum value indicates the KCS → DWCS transition. (c)–(e) Full
distribution functions PnðxÞ as a function of gd for V ¼ 8 evaluated from 10000 single shots. The plots of the probability to detect zero
[P0ðxÞ] or one [P1ðxÞ] particle are reminiscent of the one-body density [compare Fig. 1(a)]. The probability of detecting two particles
[P2ðxÞ] vanishes clearly when the CS transition occurs. At large interactions, gd ≳ 6, P0ðxÞ and P1ðxÞ exhibit a density-wave pattern.
This pattern along with vanishing P2ðxÞ reveals the DWCS. See [83], Section S6, for the FDF in momentum space.
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We expect low lying phononlike excitations in our
many-body system, similarly to [99]. In contrast to [99],
the dependence of the crystal spacing on the strength of the
dipole-dipole interactions alters the dispersion relation and,
therewith, the phonon modes in our setup.
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Maréchal, L. Vernac, J.-C. Keller, and O. Gorceix,
Phys. Rev. A 77, 061601(R) (2008).

[3] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev,
Phys. Rev. Lett. 107, 190401 (2011).

[4] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R.
Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 210401
(2012).

[5] K. K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B.
Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D.
S. Jin, and J. Ye, Science 322, 231 (2008).

[6] J. W. Park, S. A. Will, and M.W. Zwierlein, Phys. Rev.
Lett. 114, 205302 (2015).

[7] M. A. Baranov, Phys. Rep. 464, 71 (2008).
[8] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and

T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).
[9] S. Yi and L. You, Phys. Rev. A 63, 053607 (2001).

[10] L. Santos, G. V. Shlyapnikov, P. Zoller, M. Lewenstein
et al., Phys. Rev. Lett. 85, 1791 (2000).

[11] K. Góral, K. Rzazewski, and T. Pfau, Phys. Rev. A 61,
051601(R) 2000).

[12] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys. Rev.
A 71, 033618 (2005).

[13] K. Góral and L. Santos, Phys. Rev. A 66, 023613 (2002).
[14] T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier,

and T. Pfau, Nat. Phys. 4, 218 (2008).

[15] G. M. Bruun and E. Taylor, Phys. Rev. Lett. 101, 245301
(2008).

[16] N. R. Cooper and G. V. Shlyapnikov, Phys. Rev. Lett. 103,
155302 (2009).

[17] A. S. Arkhipov, G. E. Astrakharchik, A. V. Belikov, and
Y. E. Lozovik, JETP Lett. 82, 39 (2005).

[18] R. Citro, E. Orignac, S. De Palo, and M. L. Chiofalo,
Phys. Rev. A 75, 051602(R) (2007).

[19] S. De Palo, E. Orignac, R. Citro, and M. L. Chiofalo,
Phys. Rev. B 77, 212101 (2008).

[20] P. Pedri, S. De Palo, E. Orignac, R. Citro, and M. L.
Chiofalo, Phys. Rev. A 77, 015601 (2008).

[21] S. Zöllner, G. M. Bruun, C. J. Pethick, and S. M. Reimann,
Phys. Rev. Lett. 107, 035301 (2011).

[22] S. Zöllner, Phys. Rev. A 84, 063619 (2011).
[23] M. Maik, P. Buonsante, A. Vezzani, and J. Zakrzewski,

Phys. Rev. A 84, 053615 (2011).
[24] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and

P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).
[25] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and

I. Bloch, Nature (London) 415, 39 (2002).
[26] M. Di Liberto, A. Hemmerich, and C. Morais Smith,

Phys. Rev. Lett. 117, 163001 (2016).
[27] T. Kock, C. Hippler, A. Ewerbeck, and A. Hemmerich,

J. Phys. B 49, 042001 (2016).
[28] T. Kock, M. Ölschläger, A. Ewerbeck, W.M. Huang,

L. Mathey, and A. Hemmerich, Phys. Rev. Lett. 114,
115301 (2015).

[29] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T.
Donner, and T. Esslinger, Nature (London) 532, 476
(2016).

[30] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Nature (London)
515, 237 (2014).

[31] M. Landini, N. Dogra, K. Kroeger, L. Hruby, T.
Donner, and T. Esslinger, Phys. Rev. Lett. 120, 223602
(2018).

[32] T. Langen, S. Erne, R. Geiger, B. Bauer, T. Schweigler,
M. Kuhnert, W. Rohinger, I. E. Mazets, T. Gasenzer, and
J. Schmiedmayer, Science 348, 207 (2015).

[33] T. Schweigler, V. Kasper, S. Erne, B. Rauer, T. Langen,
T. Gasenzer, J. Berges, and J. Schmiedmayer,
Nature (London) 545, 323 (2017).

[34] N. J. Engelsen, R. Krishnakumar, O. Hosten, and M. A.
Kasevich, Phys. Rev. Lett. 118, 140401 (2017).

[35] T. Lahaye, T. Pfau, and L. Santos, Phys. Rev. Lett. 104,
170404 (2010).

[36] L. Dell’Anna, G. Mazzarella, V. Penna, and L. Salasnich,
Phys. Rev. A 87, 053620 (2013).

[37] B. Xiong and U. R. Fischer, Phys. Rev. A 88, 063608
(2013).

[38] A. Gallemi, M. Guilleumas, R. Mayol, and A. Sanpera,
Phys. Rev. A 88, 063645 (2013).

[39] A. Gallemi, G. Queralto, M. Guilleumas, R. Mayol, and
A. Sanpera, Phys. Rev. A 94, 063626 (2016).

[40] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N.
Wenz, and S. Jochim, Science 332, 336 (2011).

[41] S. Murmann, A. Bergschneider, V. M. Klinkhamer, G.
Zürn, T. Lompe, and S. Jochim, Phys. Rev. Lett. 114,
080402 (2015).

PHYSICAL REVIEW LETTERS 125, 093602 (2020)

093602-5

https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevA.77.061601
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1126/science.1163861
https://doi.org/10.1103/PhysRevLett.114.205302
https://doi.org/10.1103/PhysRevLett.114.205302
https://doi.org/10.1016/j.physrep.2008.04.007
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevA.66.023613
https://doi.org/10.1038/nphys887
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.103.155302
https://doi.org/10.1103/PhysRevLett.103.155302
https://doi.org/10.1134/1.2045336
https://doi.org/10.1103/PhysRevA.75.051602
https://doi.org/10.1103/PhysRevB.77.212101
https://doi.org/10.1103/PhysRevA.77.015601
https://doi.org/10.1103/PhysRevLett.107.035301
https://doi.org/10.1103/PhysRevA.84.063619
https://doi.org/10.1103/PhysRevA.84.053615
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevLett.117.163001
https://doi.org/10.1088/0953-4075/49/4/042001
https://doi.org/10.1103/PhysRevLett.114.115301
https://doi.org/10.1103/PhysRevLett.114.115301
https://doi.org/10.1038/nature17409
https://doi.org/10.1038/nature17409
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1126/science.1257026
https://doi.org/10.1038/nature22310
https://doi.org/10.1103/PhysRevLett.118.140401
https://doi.org/10.1103/PhysRevLett.104.170404
https://doi.org/10.1103/PhysRevLett.104.170404
https://doi.org/10.1103/PhysRevA.87.053620
https://doi.org/10.1103/PhysRevA.88.063608
https://doi.org/10.1103/PhysRevA.88.063608
https://doi.org/10.1103/PhysRevA.88.063645
https://doi.org/10.1103/PhysRevA.94.063626
https://doi.org/10.1126/science.1201351
https://doi.org/10.1103/PhysRevLett.114.080402
https://doi.org/10.1103/PhysRevLett.114.080402


[42] S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M.
Reimann, L. Santos, T. Lompe, and S. Jochim, Phys. Rev.
Lett. 115, 215301 (2015).

[43] K. Góral, L. Santos, and M. Lewenstein, Phys. Rev. Lett.
88, 170406 (2002).

[44] E. G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev. Lett.
97, 260401 (2006).

[45] K. Biedroń, M. Łacki, and J. Zakrzewski, Phys. Rev. B 97,
245102 (2018).

[46] A. Maluckov, G. Gligorić, L. Hadžievski, B. A. Malomed,
and T. Pfau, Phys. Rev. Lett. 108, 140402 (2012).

[47] D. L. Kovrizhin, G. Venketeswara Pai, S. Sinha, G. V. Pai,
and S. Sinha, Europhys. Lett. 72, 162 (2005).

[48] S. Yi, T. Li, and C. P. Sun, Phys. Rev. Lett. 98, 260405
(2007).

[49] D. Grimmer, A. Safavi-Naini, B. Capogrosso-Sansone,
and S. G. Söyler, Phys. Rev. A 90, 043635 (2014).

[50] F. Cinti, J. Low Temp. Phys. 182, 153 (2016).
[51] I. Danshita and C. A. R. Sa de Melo, Phys. Rev. Lett. 103,

225301 (2009).
[52] X. Deng and L. Santos, Phys. Rev. B 84, 085138

(2011).
[53] C. Menotti, C. Trefzger, and M. Lewenstein, Phys. Rev.

Lett. 98, 235301 (2007).
[54] B. Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P.

Zoller, and G. Pupillo, Phys. Rev. Lett. 104, 125301
(2010).

[55] G. E. Astrakharchik and Yu. E. Lozovik, Phys. Rev. A 77,
013404 (2008).

[56] F. Deuretzbacher, J. C. Cremon, and S. M. Reimann, Phys.
Rev. A 81, 063616 (2010).

[57] J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J.
Daley, New J. Phys. 13, 059503 (2010).

[58] S. Bera, B. Chakrabarti, A. Gammal, M. C. Tsatsos, M. L.
Lekala, B. Chatterjee, C. Lévêque, and A. U. J. Lode,
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