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We present a rigorous explicit expression for an extensive number of local conserved quantities in the
XYZ spin-1=2 chain with general coupling constants. All the coefficients of operators in each local
conserved quantity are calculated. We also confirm that our result can be applied to the case of the XXZ
chain with a magnetic field in the z-axis direction.
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Introduction.—Understanding and describing non-
equilibrium phenomena in quantum many-body systems
is one of the challenging problems in physics. Particularly
for the past two decades, nonequilibrium phenomena in
integrable systems have been attracting more attention
owing to their experimental realization with ultracold
atomic gases [1–4]. An extensive number of local con-
served quantities, which characterizes integrable systems,
are key elements of nonequilibrium phenomena. For
example, these quantities prevent systems from relaxing
to a thermal state, which is described by the canonical
ensemble, and it is proposed that the steady states in
integrable systems are described by the generalized Gibbs
ensemble [5,6], whose density matrix is constructed from
an extensive number of local and quasilocal conserved
quantities as well as the Hamiltonian [7,8]. The second
example is the generalized hydrodynamics [9,10], which
describes large scale nonequilibrium dynamics in inte-
grable systems and is formulated from the set of continuity
equations for conserved quantities. In many interacting
integrable systems which are solved by the Bethe ansatz
and the quantum inverse scattering methods [11,12], the
existence of local conserved quantities and the mutual
commutativity of them were proved from the commuta-
tivity of transfer matrices TðλÞ with different values of the
spectral parameter λ: ½TðλÞ; TðμÞ� ¼ 0. Local conserved
quantities are obtained from the expansion of lnTðλÞ in
terms of λ, which includes the Hamiltonian. Another
standard method to construct local conserved quantities
is to use the boost operator B [13–15]. In this method, local
conserved quantities are obtained recursively from the
commutation relations as ½B;Qn� ¼ Qnþ1.
Although how to prove the existence of local conserved

quantities and construct them are known, it is still difficult
to obtain the explicit expression for them because the
calculation is complicated in general, and one needs to find
the pattern of coefficients of local conserved quantities to
express general local conserved quantities. Grabowski and
Mathieu investigated the problem for the XYZ spin-1=2
chain, which is a generalization of the Heisenberg spin-1=2

chain and known as an integrable spin chain [12,16–24]
with the use of the boost operator. As a result, they found
the explicit expression in the case of the Heisenberg chain
(also called the XXX chain) [25,26]. In the more general
case, so far, Qn has been obtained only in the case of 3 ≤
n ≤ 6 from the Hamiltonian Q2 ¼ H, and the explicit
expression for general local conserved quantities was not
found. For the study of nonequilibrium phenomena, the
explicit expression for local conserved quantities is a useful
tool. For example, current operators, which are fundamen-
tal ones in the study of transport phenomena [27], can be
constructed from the continuity equations of the densities
of local conserved quantities.
In this Letter, we present an explicit expression for all the

local conserved quantities in the XYZ spin-1=2 chain with
general coupling constants. We also confirm that our result
can be applied to the XXZ spin-1=2 chain with a magnetic
field in the z-axis direction, which is also known as a Bethe
ansatz soluble model [11,28]. To obtain the expression, we
have used a straightforward way with a notation called
doubling product, which was introduced to prove the
absence of local conserved quantities in the XYZ spin-
1=2 chain with a magnetic field [29] and its extension. We
have directly derived the conditions for the commutator of
each local conserved quantity and the Hamiltonian to be
zero. With the doubling-product notation, we have found
the pattern of coefficients of local conserved quantities and
obtained general solutions of them.
Model and k-support conserved quantities.—We con-

sider the XYZ spin-1=2 chain without a magnetic field for
periodic boundary conditions

H ¼
XL
i¼1

ðJXXiXiþ1 þ JYYiYiþ1 þ JZZiZiþ1Þ; ð1Þ

where Xi, Yi, and Zi represent the Pauli matrices σx, σy, and
σz acting on the spin at the site i, respectively. We set all the
coupling constants JX, JY , and JZ nonzero. Following
Ref. [29], we define k-support conserved quantities Qk,
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Qk ¼
Xk
l¼1

X
Al

XL
i¼1

qAlAl
i: ð2Þ

Here, Al
i ≡ A1

i A
2
iþ1 � � �Al

iþl−1 is a sequence of l operators
acting from the site i to the site iþ l − 1. Operators at both
ends A1, Al take X, Y, or Z, and the other operators
A2;…; Al−1 take X, Y, Z, or the identity operator I.

P
i A

l
i is

called an l-support operator. Coefficients fqAlg are deter-
mined from the commutation relation ½Qk;H� ¼ 0. For
example, the Hamiltonian itself is a trivial two-support
conserved quantity, and it is easily proved that all the one-
support conserved quantities are

P
i Xi if JY ¼ JZ,

P
i Yi if

JZ ¼ JX, and
P

i Zi if JX ¼ JY . Therefore, we considerQk
for k ≥ 2 hereafter, and our aim is to determine the
coefficients fqAlg of Qk.
To describe commutation relations, we use the following

notation [29]:

Xi Yiþ1 Ziþ2

Xiþ2 Xiþ3

≡ −i½XiYiþ1Ziþ2; Xiþ2Xiþ3�=2
¼ XiYiþ1Yiþ2Xiþ3; ð3Þ

and we drop the subscripts hereafter for visibility.
Fundamental formulas using this notation are

XY XY XY

XX YY ZZ

¼ −IZ; ¼ ZI; ¼ 0; ð4Þ

XX XX XX

XX YY ZZ

¼ 0; ¼ 0; ¼ 0; ð5Þ

XI XI XI

XX YY ZZ

¼ 0; ¼ ZY; ¼ −YZ: ð6Þ
Doubling-product operators and their extension.—First

we consider the case that the site number L satisfies
k ≤ L=2. As shown in Ref. [29], by considering (kþ 1)-
support operators in ½Qk;H�, k-support operators in Qk are
restricted to doubling-product operators defined as

A1A2 � � �Ak−2Ak−1

¼ cA1 ðA1A2Þ ðA2A3Þ � � � ðAk−2Ak−1Þ Ak−1

¼ A1 A1;2A2;3 � � �Ak−2;k−1 Ak−1; ð7Þ

where Aα takes one of fX; Y; Zg and it is required that
Aα ≠ Aαþ1. We define Aα;β by fAα; Aβ; Aα;βg ¼ fX; Y; Zg

when Aα ≠ Aβ. The coefficient c ∈ f�1;�ig is determined
from Eq. (7). Furthermore, after fixing a normalization
factor ofQk, nonzero coefficients of k-support operators are
uniquely given by

qA1A2���Ak−2Ak−1

¼ sðA1A2 � � �Ak−2Ak−1ÞJA1
JA2

� � � JAk−2
JAk−1

; ð8Þ

where sðXYÞ ¼ sðYZÞ ¼ sðZXÞ ¼ −sðYXÞ ¼ −sðZYÞ ¼
−sðXZÞ≡ 1, and sðA1A2 � � �Ak−2Ak−1Þ≡ sðA1A2ÞsðA2A3Þ
� � � sðAk−2Ak−1Þ. Therefore, for 2 ≤ k ≤ L=2, Qk is unique
up to differences of smaller support conserved quantities
Qk0<k. Note that Qk þQk0<k is also a k-support conserved
quantity.
To express k0ð< kÞ-support operators inQk, it is useful to

extend the definition of doubling-product operators. Let us
allow the case that neighboring symbols in doubling-
product operators are the same Aα ¼ Aαþ1. Then, in the
definition Eq. (7), Aα;αþ1 is replaced by I if Aα ¼ Aαþ1.
When the condition Aα ¼ Aαþ1 satisfies atm places in an l-
support operator, we call it an ðl; mÞ operator. m is called
the number of holes and used to study the structure of
conserved quantities [25,26]. Under this definition, all the
k-support operators in Qk are ðk; 0Þ operators.
We can express ðl; mÞ operators as

A1 � � �A1|fflfflfflfflffl{zfflfflfflfflffl}
1þm1

A2 � � �A2|fflfflfflfflffl{zfflfflfflfflffl}
1þm2

� � � � � �Al−m−1 � � �Al−m−1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1þml−m−1

≡ A1þm1

1 A1þm2

2 � � �A1þml−m−1
l−m−1 ; ð9Þ

where Aα ≠ Aαþ1 and mj ≥ 0 is an integer which satisfiesP
l−m−1
j¼1 mj ¼ m. For example, X2Z2 ¼ XXZZ ¼ XIYIZ

and X3Z ¼ XXXZ ¼ XIIYZ are both (5,2) operators.
When we consider commutation relations of ðl; mÞ oper-
ators, we use the following notation:

XYZ2

Z
≡ XZXIZ

ZZ

¼ −XIYIZ ¼ −X2Z2; ð10Þ

where XYZ2 is a (5,1) operator, and X2Z2 is a (5,2)
operator.
Structure of Qk.—Let us consider the commutation rela-

tion of an ðl; mÞ operator inQk A
1þm1

1 A1þm2

2 � � �A1þml−m−1
l−m−1 and

H. Candidates of operators in the commutator are (l� 1) and l
support. First, (l − 1)-support operators are constructed by
removing A1 or Al−m−1. As for A1, this operator is

A1A
m1

1 A1þm2

2 � � �A1þml−m−1
l−m−1

A1: ð11Þ
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Note that this term is nonzero only if m1 ¼ 0 and A1 ≠ A2.
Therefore, the number of holes is conserved, and it is an
ðl − 1; mÞ operator. The same holds for Al−m−1. Second,
(lþ 1)-support operators are constructed by addingA0ð≠ A1Þ
on the left side of A1:

A1þm1

1 A1þm2

2 � � �A1þml−m−1
l−m−1

A0 ; ð12Þ
or Al−mð≠ Al−m−1Þ on the right side of Al−m−1. Therefore,
these operators are ðlþ 1; mÞ operators. The third case of
l-support operators is a bit more complicated. For example,
they are given as

A1þm1

1 � � �Ap � � �A1þml−m−1
l−m−1

Bp : ð13Þ
If Ap ¼ Bp for 1 < p < l − 1, these operators cannot be
expressed as ðl; mÞ operators. However, these terms are
cancelled and do not contribute to the commutator. In the
case ofAp ≠ Bp, fromEqs. (4)–(6), only ðl; m� 1Þ operators
are obtained (see Supplemental Material [30] for the details).
Consequently, operators in Qk are classified as ðl; mÞ

operators as shown in Fig. 1. Here, we fix the degrees of
freedom to add Qk0<k. For example, coefficients of

ðk − 2n − 1; 0Þ operators (n ¼ 0; 1;…) are set to zero. In
Fig. 1, circles represent ðl; mÞ operators in Qk, and crosses
shown by arrows represent operators generated by the
commutation relations of ðl; mÞ operators in Qk and H.
From this structure, Qk is represented as

Qk ¼
X

0≤nþm≤bk
2
c−1;

n;m≥0

X
Ā∶

ðk−2n−m;mÞoperators

qk−2n−m;m
Ā

Ā: ð14Þ

Here, the sum of Ā≡ A1þm1

1 A1þm2

2 � � �A1þmk−2n−2m−1
k−2n−2m−1 runs over

all ðk − 2n −m;mÞ operators that satisfy n ≥ 0, m ≥ 0, and
k − 2n − 2m ≥ 2, which corresponds to circles in Fig. 1.
Recursive way.—One of the main results of this Letter is

that we have found a simple recursive way to determine all
the coefficients fqk−2n−m;m

Ā
g in Eq. (14) [30]. By introduc-

ing some functions, we describe the way.
First, qk−2n−m;m

Ā
is expressed using the function R as

qw;m
A
1þm1
1

A
1þm2
2

���A1þmt
t

¼ sðA1A2 � � �AtÞðJXJYJZÞm

×

�Yt
j¼1

J
1−mj

Aj

�
Rw;mðA1A2 � � �AtÞ; ð15Þ

where we introduce the notation w≡ k − 2n −m, t≡ k −
2n − 2m − 1 for simplicity. A1A2 � � �At is a character string
of length t ≥ 1, and A1; A2;…; At take one of fX; Y; Zg,
respectively. s is the function we introduced in Eq. (8).
For example, q5;2

X2Z2
¼ ðJXJYJZÞ2R5;2ðXZÞ and q5;2

X3Z
¼

ðJXJYJZÞ2ðJZ=JXÞR5;2ðXZÞ. We remark that R does not
depend on where holes are because it does not depend
on m1; m2;…; mt.
Second, R is represented as a linear combination of the

function S:

Rw;mðA1A2 � � �AtÞ ¼
Xn
ñ¼0

gw;mn−ñSñðA1A2 � � �AtÞ; ð16Þ

where S is defined as S0ðA1A2 � � �AtÞ≡ 1 and

SñðA1A2 � � �AtÞ≡
X

1≤j1≤j2≤���≤jñ≤t
J2Aj1

J2Aj2
� � � J2Ajñ

ð17Þ

for ñ ≥ 1, and gw;mn−ñð0 ≤ ñ ≤ nÞ does not depend on
A1A2 � � �At. By definition, Rw;m is a symmetric polynomial
in J2A1

; J2A2
;…; J2At

.
Finally, gw;mn−ñ is determined as follows. From Eq. (8),

which corresponds to the case of n ¼ 0, gk−m;m
0 ¼ 1

because Rk−m;m ¼ 1. Figure 2 shows how to determine
the other gw;mn−ñ’s recursively. Suppose that Rwþ1;m−1 ¼P

n
ñ¼0 g

wþ1;m−1
n−ñ Sñ (the upper left circle) and Rwþ1;mþ1 ¼P

n−1
ñ¼0 g

wþ1;mþ1
n−1−ñ Sñ (the upper right circle) are determined.

Then Rw;m (the lower center circle) is determined asP
n
ñ¼0 g

wþ1;m−1
n−ñ añ þ

P
n−1
ñ¼0 g

wþ1;mþ1
n−1−ñ Sñþ1. Here, in the case

of m ¼ 0, the term with respect to Rwþ1;m−1 is regarded as
zero. an is defined as

FIG. 1. Structure of a k-support conserved quantity Qk for
k ¼ 10. Circles represent ðl; mÞ operators in Qk, where
l ¼ k − 2n −m. Crosses represent operators generated by the
commutation relation of H and operators represented as circles,
which are to be cancelled.
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an ≡ J2XðJ2ðnþ2Þ
Y − J2ðnþ2Þ

Z Þ þ J2YðJ2ðnþ2Þ
Z − J2ðnþ2Þ

X Þ þ J2ZðJ2ðnþ2Þ
X − J2ðnþ2Þ

Y Þ
ðJ2X − J2YÞðJ2Y − J2ZÞðJ2Z − J2XÞ

: ð18Þ

By following this recursive way, all the other gw;mn−ñ’s are
determined. an is characterized as the coefficient of u2 in
the remainder of the division of a monomial unþ2 by
ðu − J2XÞðu − J2YÞðu − J2ZÞ, and plays an important role in
our proof that this recursive way is correct [30]. We note that
even if JX ¼ JY , an does not diverge by the characterization
of an. an is also obtained from the recurrence relation
anþ3 ¼ ðJ2X þ J2Y þ J2ZÞanþ2 − ðJ2XJ2Y þ J2YJ

2
X þ J2ZJ

2
XÞ

anþ1 þ J2XJ
2
YJ

2
Zan, a−2 ¼ a−1 ¼ 0, and a0 ¼ 1.

In the case of the XXX chain (JX ¼ JY ¼ JZ ¼ 1), the
pattern ofRw;m becomes more simple [30]. It is satisfied that
Rw;m¼Rwþ1;m−1þRwþ1;mþ1 for m≥1, which reproduces
the known structure called a Catalan tree in Refs. [25,26].
Explicit expression for Qk.—By solving the recursive

way discussed above explicitly, we have obtained the
explicit expression for Qk [30]. The solution for gw;mn−ñ ≡
gk−2n−m;m
n−ñ is k independent and given by

gw;mn−ñ ¼ fðn − ñ; mþ ñÞ; ð19Þ
where f is defined as fð0; mÞ≡ 1 and

fðn;mÞ

≡ m
nþm

Xn
p¼1

�
nþm
p

� X
j1;j2;…;jp≥1

j1þj2þ���þjp¼n

aj1aj2 � � � ajp ð20Þ

for n ≥ 1.

For k ≤ 6, the explicit expression for Qk was
calculated in Ref. [26]. Here, as an example, we present
the coefficients of 0-hole operators inQ8. They are given as
q8;0ðA1A2���A7Þ¼sðA1A2���A7Þ

Q
7
j¼1JAj

, q6;0ðA1A2���A5Þ¼
sðA1A2���A5Þð

Q
5
j¼1JAj

ÞP5
j¼1J

2
Aj
, q4;0ðA1A2A3Þ ¼

sðA1A2A3Þð
Q

3
j¼1 JAj

Þ½J4A1
þ J4A2

þ J4A3
þ J2A1

J2A2
þ J2A2

J2A3
þ

J2A3
J2A1

þ ðJ2X þ J2Y þ J2ZÞ
P

3
j¼1 J

2
Aj
�, and q2;0ðA1Þ¼

JA1
½J6A1

þ2ðJ2XþJ2YþJ2ZÞJ4A1
þð2J4Xþ2J4Yþ2J4Zþ3J2XJ

2
Yþ

3J2YJ
2
Zþ3J2ZJ

2
XÞJ2A1

�.
Let us compare some properties of Q2k0 and Q2k0þ1,

where k0 is a positive integer. We first consider the time-
reversal symmetry. Q2k0ðþ1Þ consists of the sum of
(2k0ðþ1Þ − 2n −m;m) operators as shown in Eq. (14).
Since (2k0ðþ1Þ − 2n −m;m) operators act on an even
(odd) number of sites as the Pauli matrices, these operators
are (anti-)symmetric under time reversal. Therefore,
Q2k0ðþ1Þ is (anti-)symmetric under time reversal. We next
consider the similarity between Q2k0 and Q2k0þ1. Since
b2k0=2c ¼ bð2k0 þ 1Þ=2c ¼ k0, n and m included in the
summation of Q2k0 and Q2k0þ1 in Eq. (14) take the same
values. For this reason, the coefficients of the operators in
Q2k0 and Q2k0þ1 have a similar structure.
We note that even if one or two coupling constants are

zero, Qk we obtained can be used. However, Qk may be a
conserved quantity multiplied by coupling constants set to
zero, and it needs to be divided by the coupling constants in
this case. Another difference from the case that all the
coupling constants are nonzero is that k-support conserved
quantities are not unique even for 2 ≤ k ≤ L=2. In fact, it is
known that there is another family of local conserved
quantities in addition to Qk’s [26,31–34]. For example, in
the case of JZ ¼ 0,

P
iðXiYiþ1 − YiXiþ1Þ is another two-

support conserved quantity in addition to the Hamiltonian
Q2 ¼ H itself.
Commutativity with a magnetic field in the case of the

XXZ chain.—In the case of JX ¼ JY , we confirm that
½Qk;

P
i Zi� ¼ 0, i.e.,Qk is also conserved in the XXZ spin-

1=2 chain with a magnetic field in the z-axis direction.
Since it is known that the transfer matrix of the XXZ
spin-1=2 chain commutes with the magnetic field
½TðλÞ;Pi Zi� ¼ 0 [11], local conserved quantities obtained
from the expansion of lnTðλÞ in terms of λ also commute
with the magnetic field. In addition, the uniqueness of
k-support conserved quantities for 2 ≤ k ≤ L=2 also holds
in the presence of the magnetic field because commutation
relations of the magnetic field and k-support operators
generate no (kþ 1)-support operators. Therefore, Qk is a
linear combination of local conserved quantities obtained

FIG. 2. Recursive way to obtain the function Rw;m in
Eq. (15). When Rwþ1;m−1 ¼ P

n
ñ¼0 g

wþ1;m−1
n−ñ Sñ and Rwþ1;mþ1 ¼P

n−1
ñ¼0 g

wþ1;mþ1
n−1−ñ Sñ are determined, then Rw;m is determined as the

sum of two terms; the first term is obtained by the replacement Sñ
to añ in Rwþ1;m−1, and the second term is obtained by the
replacement Sñ to Sñþ1 in Rwþ1;mþ1.
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from the transfer matrix method, and ½Qk;
P

i Zi� ¼ 0 is
satisfied. We note that one can prove this commutativity
explicitly by using Eqs. (14)–(20) [30].
Case of L=2 < k ≤ L.—In the case of L=2 < k ≤ L, a

different point from the case of 2 ≤ k ≤ L=2 is that
commutators of different support operators can be can-
celled. In this case, the conditions we impose in the above
discussion for 2 ≤ k ≤ L=2 become not necessary but
sufficient for ½Qk;H� ¼ 0. Therefore, the Qk we obtain is
also conserved for L=2 < k ≤ L, although it is not neces-
sarily the unique k-support conserved quantity.
Summary and outlook.—We have presented the rigorous

explicit expression for k-support conserved quantities in the
XYZ spin-1=2 chain fQkg for 1 ≤ k ≤ L. The doubling
product is a useful notation to find and express them. By
using this notation, we have derived a recursive way to
obtain the coefficients of Qk directly and have found the
solution. We have also confirmed that Qk for k ≥ 2 is
conserved even in the case of the XXZ model with a
magnetic field in the z-axis direction. The XXX chain was
the exceptional case that the expression is known [25,26],
and our result has expanded the scope to general coupling
constants. In particular, it enables us to analyze the
coupling constants’ dependence of the local conserved
quantities. Once the expression Eqs. (14)–(20) is obtained,
one can easily handle the local conserved quantities both
analytically and numerically. Therefore, our result may
serve as a new tool for the study of nonequilibrium
phenomena in interacting integrable spin chains.
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