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The ability of humans and animals to quickly adapt to novel tasks is difficult to reconcile with the
standard paradigm of learning by slow synaptic weight modification. Here, we show that fixed-weight
neural networks can learn to generate required dynamics by imitation. After appropriate weight pretraining,
the networks quickly and dynamically adapt to learn new tasks and thereafter continue to achieve them
without further teacher feedback. We explain this ability and illustrate it with a variety of target dynamics,
ranging from oscillatory trajectories to driven and chaotic dynamical systems.
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Introduction.—Humans and animals can learn wide vari-
eties of tasks. The predominant paradigm assumes that their
neural networks achieve this by slow adaptation of con-
nection weights between neurons [1,2]. Neurobiological
experiments, however, also indicate fast learning with static
weights [3]. Our study addresses how neural networks may
quickly learn to generate required output dynamics without
weight learning.
The goal of neural network learning is ultimately to

appropriately change the activity of the output neurons of
the network. In supervised learning, it should match a target
and continue doing so during subsequent testing; in
reinforcement learning, it should maximize a sparsely
given reward. In our study, the networks adapt their weights
during a pretraining phase [4–6] such that thereafter with
static weights they achieve supervised learning of desired
outputs, by adapting only their dynamics (dynamical
learning). Adapting the static network’s weights during
pretraining is thus a kind of metalearning or learning to
learn. There is a recent spurt of interest in learning to learn
[5,6], focusing mainly on learning of reinforcement learn-
ing [7–9]. Studies on learning of supervised dynamical
learning showed prediction of a time series at the current
time step given the preceding step’s target [10–19] and
control of a system along a time-varying target [20–23].
The studies assume that a target is present during testing to
avoid unlearning. This limits applicability and renders the
dynamics necessarily nonautonomous; it is conceptually
problematic for supervised settings and at odds with the
common concept of teacher-free recall.
We therefore develop a scheme for fast supervised

dynamical learning and subsequent teacher-free generation
of long-term dynamics. We consider models for biological
recurrent (reciprocally connected) neural networks, where
leaky rate neurons interact in continuous time [1,2]. Such
models are amenable to learning, computation, and phase
space analysis [1,2,24–26]. After appropriate pretraining

using the reservoir computing scheme (where only the
weights to output neurons are trained [25,27,66,67]), all
weights are fixed. The networks can nevertheless learn to
generate new, desired dynamics. Furthermore, they con-
tinue to generate them in a self-contained manner during
subsequent testing. We illustrate this with a variety of
trajectories and dynamical systems and analyze the under-
lying mechanisms.
Network model.—We use recurrent neural networks,

where each neuron (or neuronal subpopulation)
i; i ¼ 1;…; N, with N between 500 and 3000 depending
on the task [27], is characterized by an activation variable
xiðtÞ and communicates with other neurons via its firing rate
riðtÞ, a nonlinear function of xiðtÞ [1,2]. In isolation xiðtÞ
decays to zero with a time constant τi. This combines the
decay times of membrane potential and synaptic currents.
The network has two outputs, which can be interpreted as
linear neurons: signal zkðtÞ; k ¼ 1;…; Nz, and context
clðtÞ; l ¼ 1;…; Nc (Fig. 1). After learning, zðtÞ generates
the desired dynamics while cðtÞ indexes it. They are
continually fed back to the network, allowing their autono-
mous generation [66]. The networks are temporarily also
informedabout their signal’s difference from its target z̃ðtÞ by
an error input εðtÞ ¼ zðtÞ − z̃ðtÞ. Taken together, for constant
weights the network dynamics are given by

τ _xðtÞ ¼ −xðtÞ þ ArðtÞ þ wzzðtÞ
þ wccðtÞ þ wεεðtÞ þ wuuðtÞ;

zðtÞ ¼ ozrðtÞ; cðtÞ ¼ ocrðtÞ; ð1Þ

with recurrent weights A, the diagonal matrix of time
constants τ, signal and context output weights oz, oc, feed-
back weights wz, wc, input weights wε, wu, and a drive uðtÞ
absent for most tasks. We choose riðtÞ ¼ tanh½xiðtÞ þ bi�
[25,66,68]; offsets bi are drawn from a uniform distribution
between −0.2 and 0.2 and break the x → −x symmetry
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without input. Unless mentioned otherwise, we set τi ¼ 1
fixing the overall timescale. Recurrent weights Aij are set to
zero with probability 1 − p (p ¼ 0.1 or p ¼ 0.2 depending
on the task). Nonzero weights are drawn from a Gaussian
distribution with mean 0 and variance ðg2=pNÞ, where g ¼
1.5 [25].wz;ij,wc;ij, andwε;ij,wu;ij are drawn from a uniform
distribution between −w̃ and w̃ (w̃ ¼ 1 or w̃ ¼ 2).
Pretraining.—The aim of our pretraining [Fig. 1(a)] is

twofold. First, it should enable the resulting static networks
to learn signals of a specific class given only the error input
εðtÞ. Second, after removing the error input the static
networks should be able to continue to generate the desired
dynamics. Therefore, the networks have to learn to minimize
εðtÞ and, as explained in the Analysis section, to associate
unique contexts with the different target dynamics.
To achieve this, we present different trajectories z̃ðtÞ of

the target class to the networks, together with associated,
straightforwardly chosen constant indices c̃. The output
weights oz;ij and oc;ij learn online according to the FORCE
rule [25,27] to minimize the output errors εðtÞ and cðtÞ − c̃.
In short, they are modified using the supervised recursive
least-squares algorithm with high learning rate. This
provides a least-squares optimal regularized solution for
the output weights given the past network states and targets
[69]. Signals and indices are presented for a time twlearn (30
000 or 50 000) as a continuous, randomly repeating
sequence of training periods of duration tstay (between

200 and 1000). During each training period’s first part, a
network receives εðtÞ as input. Because of the various last
states of the previous learning periods, it thus learns to
approach z̃ðtÞ from a broad range of initial conditions given
this input. In most of our tasks, after a time tfb ¼ 100, when
zðtÞ is close to z̃ðtÞ, εðtÞ is switched off and cðtÞ is fixed to
its constant target, matching the testing paradigm. This
often helps the network to learn generation of zðtÞ ≈ z̃ðtÞ
without error input.
Dynamical learning and testing.—The weights now

remain static and the error input teaches the network
new tasks of the pretrained target class [Fig. 1(b)], i.e.,
the networks dynamically learn to generate zðtÞ ≈ z̃ðtÞ for
previously unseen z̃ðtÞ. The learning time tlearn (between 50
and 200) is short, a few characteristic timescales of the
target dynamics [27]. cðtÞ is moderately fluctuating.
Thereafter, the test phase begins, where no more teacher

is present (wε → 0). In weight-learning paradigms, during
such phases the weights are fixed [25,66,67,70,71]. We
likewise fix cðtÞ to a temporally constant value, an average
of previously assumed ones, cðtÞ ¼ c̄. This may be
interpreted as indicating that the context is unchanged
and the same signal is still desired. We find in our
applications, that the network dynamics continue to gen-
erate a close-to-desired signal zðtÞ, establishing the suc-
cessful dynamical learning of the task.
Applications.—We illustrate our approach by learning a

variety of trajectories [tasks (i)–(iv)] and dynamical sys-
tems [tasks (v),(vi)]. First, we consider a family z̃ðt; kÞ of
target trajectories, parametrized by k. The networks are
pretrained on a few of them, where the context target c̃ is a
linear function of k. Thereafter, the networks dynamically
learn to generate a previously unseen trajectory as output
and perpetuate it during testing. We start with the simple,
instructive target family of oscillations with different
periods [task (i)]: z̃ðt;TÞ ¼ 5 sin½ð2π=TÞt�. We use three
different teacher trajectories for pretraining, with T ¼ 10,
15, 20. After pretraining, our networks can precisely
dynamically learn oscillations with unseen periods within
and slightly beyond the pretrained ones [Figs. 2(a) and 2(b),
see [27] for further detail and analysis of learning perfor-
mance of all tasks]. Next, in (ii), we generalize (i) to higher
order Fourier series. Specifically, we consider the target
family of superpositions of two random Fourier series with
weighting factor λ: z̃ðt; λÞ ¼ ð1 − λÞz̃1ðt; λÞ þ λz̃2ðt; λÞ.
Here, z̃lðt; λÞ; l ¼ 1, 2, are Fourier series of order O and
period TðλÞ ¼ ð1 − λÞT1 þ λT2. Tl and the Fourier coef-
ficients are drawn randomly. We use seven different teacher
trajectories for pretraining, with weighting factors distrib-
uted equidistantly between 0 and 1. After pretraining, we
test the dynamical learning for thirteen weighting factors
also distributed equidistantly between 0 and 1. To quantify
the learning performance, we determine the fraction of
these targets that can be successfully learned [root-mean-
square error (RMSE) below given threshold (0.4) and

(a)

(b)

FIG. 1. Pretraining and learning. (a) During pretraining, the
output weights (left, different reds) of the network are adapted
using the output errors εðtÞ ¼ zðtÞ − z̃ðtÞ (right, red) and cðtÞ −
c̃ðtÞ (light red), such that zðtÞ (blue, different scale for clarity) and
cðtÞ (light blue) match their targets. Different members of the
target family are weight learned in the training periods (dashed
vertical). At their beginnings, εðtÞ is fed also as input (purple).
(b) Dynamical learning. The output weights are now fixed. The
network receives the signal error εðtÞ as input (purple). It adapts
its dynamics to generate zðtÞ ≈ z̃ðtÞ (blue). During testing, an
error is no longer provided and cðtÞ is fixed to its previous
average (right, dashed vertical, left, dashed weights). zðtÞ con-
tinues to approximate z̃ðtÞ.
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below RMSE between signal and (other) pretrained tar-
gets]. We find that networks of increasing size can learn
Fourier series with increasing order [Figs. 2(c) and 2(d)].
Networks with 3000 neurons learn Fourier series of order
10 with a median fraction of successes of close to 90%.
Hence, very general periodic functions can be learned. The
highest producible frequency is limited by the available
neuronal timescales τi. We thus expect that larger networks
containing smaller τi can learn even higher order targets.
To check if our approach also works for a target family

with more than one parameter and multidimensional trajec-
tories, we consider in (iii) a superposition of sines with
different amplitude and period (consequently k; c̃ are two-
dimensional vectors) and in (iv) a set of fixed points along a
curve in three-dimensional space. We find that, after pre-
training, our networks are able to dynamically learn unseen
members of these target families with multidimensional
context or signal, as shown in Figs. 3(a) and 3(b) for example
trajectories.
Second, we consider a family _̃zðtÞ ¼ Fðz̃ðtÞ; uðtÞ; kÞ of

target dynamical systems. The networks are pretrained on a

few representative systems. Thereafter, an unseen one is
dynamically learned. Learning is in both phases based on
imitation of trajectories. However, in contrast to tasks (i)–
(iv) the networks now need to generate unseen output
trajectories during testing. To demonstrate dynamical learn-
ing of a driven system,we consider task (v) of approximating
the trajectory of an overdamped pendulum with drive uðtÞ
and different masses m: _̃zðtÞ ¼ F(z̃ðtÞ; uðtÞ;m). During
pretraining and dynamical learning, we use low-pass filtered
white noise as drive [Fig. 3(c), left of dashed vertical].During
testing, we use a triangular wave [Fig. 3(c), right of dashed
vertical]. As our networks nevertheless generate the correct
qualitatively different signal [Figs. 3(c) and 3(d)], they must

(a) (b)

(d)(c)

FIG. 2. Dynamical learning of periodic trajectories. (a),(b)
Testing after dynamical learning of sinusoids. (a) Signal (blue)
matches the example testing target (orange, mostly covered by
signal) well. Pretraining targets (gray traces) are clearly distinct.
(b) For many different targets the root-mean-square error (RMSE)
between signal and target is low (top) and the signal’s period
tracks the target’s period well (bottom). Gray and orange verticals
indicate periods of pretrained targets and target in (a). Dots show
median value and error bars show the interquartile range, using
ten network instances. (c),(d) Testing after dynamical learning of
Fourier series. (c) Like (a), for a random Fourier series with
O ¼ 6. Only the two closest pretrained dynamics are displayed
for clarity. (d) Learning success for different network sizes and
orders of the Fourier series. Color encodes median fraction of
success, using 40 network instances and random Fourier series.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Dynamical learning of different tasks. Testing phase
after dynamical learning of an example (a) two-parametric
superposition of sines, (b) fixed point, (c),(d) driven overdamped
pendulum, and (e),(f) Lorenz system. (a)–(d) Signals (blue)
match testing targets (orange, mostly covered by signal) well.
Pretraining targets (gray traces or spheres) are clearly distinct.
(a) displays only the four closest pretrained dynamics for clarity.
(b) Signal transients (blue, green) of subsequent dynamical
learning of two targets (orange spheres). (c) Signal, target, and
drive (green) during dynamical learning and subsequent testing
(dashed vertical). (d) Dynamically learned approximations of two
different pendulums (continuous, dashed), driven by the same
triangular input. (e) Limit sets of signal (blue) and target (orange).
(f) Tent maps of signal (blue) and dynamical (orange) and
pretrained targets (gray).
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have learned the underlying vector field Fðz̃; u;mÞ. (v) also
shows that learning goes beyond interpolation of trajectories
[compare blue and gray traces in Fig. 3(d)]. Finally, in task
(vi) we show dynamical learning of chaotic dynamics,
considering autonomous Lorenz systems with different
dissipation parameter β of the z variable. For chaotic
dynamics, even trajectories of similar systems quickly
diverge. The aim in this task is thus only to generate during
testing signals of the same type as the trajectories of the target
system. We test this by comparing the limit sets of the
dynamics and the tent-map relation between subsequent
maxima of the z coordinate [Figs. 3(e) and 3(f)]. The
reproduction of the tent-map relation further shows that
our approach can generate not explicitly trained quantitative
dynamical features. We note that the networks also dynami-
cally learn the fixed point convergence of some of the targets
in the considered parameter space, even though they were
pretrained on chaotic dynamics only [27].
Analysis.—In the following, we analyze the different

parts of our network learning and its applicability. One
interpretation of the pretraining phase is that the network
learns a negative feedback loop, which reduces the error
εðtÞ. For another interpretation, we split εðtÞ and regroup
the z-dependent part of Eq. (1) as ðwz þ wεÞzðtÞ − wεz̃ðtÞ:
feeding back εðtÞ is equivalent to adding a teacher drive
z̃ðtÞ, except for a specific change in the feedback weights
wz. For the z output alone the network thus weight learns an
autoencoder z̃ðtÞ → zðtÞ. This is usually an easy task for
reservoir networks [72]. To simultaneously learn the con-
stant output cðtÞ ¼ c̃, the network has to choose an
appropriate oc orthogonal to the subspaces in which the
different zðtÞ-driving r dynamics take place. Orthogonal
directions are available in sufficiently large networks, since
the subspaces are low dimensional [73].
After the correct z dynamics are assumed, we have

εðtÞ ≈ 0. Since remaining fluctuations in εðtÞ could stabi-
lize the dynamics, we usually include ensuing learning
phases with wε → 0 and cðtÞ ¼ c̃. These teach the network
to generate the correct dynamics in a stable manner under
conditions similar to testing.
To analyze the principles underlying dynamical learning

and testing, we consider task (i). The similarity of the
network and learning setups suggests that the same
principles underlie all our tasks. We additionally confirm
this for (vi) [27]. Viewing the network dynamics in the
space of firing rates r, we choose new coordinates with first
axis along oc and the principal components of the dynamics
orthogonal to oc. The dynamics are then given by cðtÞ ¼
ocrðtÞ; rPC1ðtÞ; rPC2ðtÞ;…. (Fig. 4). We focus on the first
three coordinates, which describe large parts of the dynam-
ics and output generation. We find that during dynamical
learning, the error feedback drives the dynamics toward an
orbit that is shifted in c but similar to pretrained ones.
The network therewith generalizes the pretrained reaching
and generation of orbits together with corresponding,

near-constant cðtÞ, while εðtÞ is fed in. We note that
the combination of current state and error input is
important [see Fig. 4(a) for wε → 0 and a mismatched
z̃ðtÞ ¼ z̃ðt0Þ for t > t0].
During testing, the network generalizes the pretrained

characteristics that feeding back wcc̃ leads to cðtÞ ≈ c̃.
Clamping wccðtÞ to wcc̄ thus results in an approximate
restriction of rðtÞ to an (N − 1)-dimensional hyperplane
with cðtÞ ¼ ocrðtÞ ≈ c̄ [Fig. 4(b)]. The resulting trajectory
is for task (i) a stable periodic orbit that generates the
desired signal, because the vector field projected to the
cðtÞ ¼ c̄ hyperplane is similar to the vector field projected
to the cðtÞ ¼ c̃ hyperplanes embedding nearby pretrained
periodic orbits [Fig. 4(c)].
Discussion and conclusion.—We have introduced a

scheme for how neural networks can quickly learn dynam-
ics without changing their weights and without requiring a
teacher during testing. It relies on a weight-learned mutual
association, quasi an entanglement, between contexts and
targets. This enables the latter to fix the former during
dynamical learning and vice versa during testing.
Previous approaches to supervised dynamical learning

with continuous signal space required a form of the
teaching signal also during testing. They further differ in
network architecture, learning algorithm, task and/or

(a)

(b) (c)

FIG. 4. Network dynamics during dynamical learning (a) and
testing (b),(c) of task (i), in c; rPC1; rPC2 coordinates. (a) During
dynamical learning, the error input drives the network to a
periodic orbit (light blue trajectory) and keeps it there (blue).
Without input, the dynamics converge to a stable orbit (gray)
whose signal approximates a pretrained one. Freezing z̃ðtÞ ¼
z̃ðt0Þ drives the dynamics to a fixed point off the orbit (green).
(b) During testing, the assumed orbit (blue) in the c-rPC;1 plane is
similar to the error driven one [light blue, closest pretrained orbits
with cðtÞ fixed to their c̃: gray]. The constant feedback c̄ prevents
the dynamics from leaving the region where cðtÞ ≈ c̄, compare
_rðrÞ (black vectors, r on or nearby trajectory) with _rðrÞ for
variable feedback cðtÞ (red vectors). (c) All four orbits are similar
in the rPC;1-rPC;2 plane. The dynamically learned orbit has an
attracting projected vector field (black vectors) like the pretrained
orbits.
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assumption of discrete time from ours [10–23,27,74–76].
In networks with external input unseen, interpolating input
can lead to interpolating dynamics [27,77]. In contrast, our
networks learn new dynamics, by imitation.
Our scheme is conceptually independent of the network

and weight-learning model. The pretraining implements a
form of structure learning, i.e., learning of the structure
underlying a task family [6,78]. Animals and humans
employ it frequently, but little is known about its neuro-
biology. We thus realize it by a simple reservoir computing
scheme with FORCE learning [25,27]. We checked that we
can use biologically more plausible weight perturbation
learning for a simple fixed point learning task [27].
Dynamical learning is biologically plausible: it is nat-

urally local, causal, and does not require fast synaptic
weight updates. Continuous supervision could be generated
by an inverse model [79] and might be replaceable by a
sparse, partial signal. Our dynamical learning is fast [27]
(cf. also [8,10,11,13,14,75]). Even for more complicated
tasks convergence requires only a few multiples of a
characteristic timescale of the dynamics. Further, we find
robustness against changes in network and task parameters
[27]. The above points suggest a high potential of our
scheme for applications in biology, physics, and engineer-
ing such as neuromorphic computing and the prediction of
chaotic systems [27].
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