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The unitary evolution of a quantum system preserves its coherence, but interactions between the system
and its environment result in decoherence, a process in which the quantum information stored in the system
becomes degraded. A spin-polarized positively charged muon implanted in a fluoride crystal realizes such a
coherent quantum system, and the entanglement of muon and nearest-neighbor fluorine nuclear spins gives
rise to an oscillatory time dependence of the muon polarization that can be detected and measured. Here we
show that the decohering effect of more distant nuclear spins can be modelled quantitatively, allowing a
very detailed description of the decoherence processes coupling the muon-fluorine “system” with its
“environment,” and allowing us to track the system entropy as the quantum information degrades. These
results show how to precisely quantify the spin relaxation of muons implanted into quantum entangled
states in fluoride crystals.
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An important issue in the study of quantum mechanics is
the interaction between a system, S, considered as a few
coupled quantum objects evolving in a manner described
by some well-defined Hamiltonian, and its environment, E,
considered as a large bath consisting of many quantum
objects. The action of the environment is to act as a source
of decoherence [1] whereby quantum information, stored in
the system and in principle readable from it, is degraded
and leaks out into the environment where it can no longer
be discovered. If the system and environment could be
considered together as a single system, S ⊗ E, this larger
system would undergo unitary evolution and its von
Neumann entropy, S ¼ −Trρ log2 ρ, where ρ is the density
matrix of the S ⊗ E composite object, would be constant.
However, we are rarely permitted this holistic view and are
restricted to monitoring the reduced density matrix of the
system, ρS ¼ TrEρ, obtained by tracing out the degrees of
freedom of the environment [2], and the entropy of S will
tend to increase with time [3].
In order to study decoherence experimentally, it is

necessary to identify well-defined scenarios in which the
interaction between the system and environment is well
characterized. One such scenario is provided by the dipolar
interaction between a spin-polarized positively charged
muon μþ and the neighboring nuclei in a fluoride com-
pound, described by the Hamiltonian

Ĥ ¼
X
i>j

μ0γiγj
4πjrijj3

½si · sj − 3ðsi · r̂ijÞðsj · r̂ijÞ�; ð1Þ

where i and j label each nuclear spin and the muon, and
rij is a vector linking spins si and sj, each with gyro-
magnetic ratios γi and γj respectively. Although other

nuclei can give rise to coherent oscillations in muon spectra
[4–6], fluorine nuclei are the best choice: they have spin
I ¼ 1

2
with 100% abundance, and fluoride ions are very

electronegative, making their surroundings particularly
attractive sites for μþ. Often a F-μ-F species forms after
muon implantation, resulting in a distinctive oscillatory
signal measured in the positron decay asymmetry [7], a
direct result of the entanglement between the fluorine and
muon spins [8]. The dipolar interaction between a single
fluorine nuclear spin and a muon would result in the energy
level spectrum shown in Fig. 1(a), while for two fluorine
nuclear spins (the F-μ-F state), the spectrum is shown in
Fig. 1(b). In both cases, the distinctive beating pattern of
oscillations in the time dependence of the muon polariza-
tion Pμ

zðtÞ occurs because of quantum interference between
these energy eigenstates. This effect can be interpreted as a
coherent exchange of spin polarization between the initially
polarized muon and the initially unpolarized fluorine
nuclei. These oscillations are shown in Fig. 1(c) and have
been observed in numerous inorganic fluorides [7,9,10],
fluoropolymers [11–13], and fluoride-containing molecular
magnets [8]. However, good fits to the experimental data
require multiplying the calculated coherent precession
signals by a phenomenological relaxation function, often
a stretched exponential, the parameters of which have no
theoretical basis. A master equation approach could be used
to model the nonunitary evolution of the reduced density
matrix of the system [14], but this would still involve an
arbitrary parameter quantifying the system-environment
coupling. We will show below that an exact treatment is
possible that includes the known couplings between
the muon and more distant fluorine nuclei, thereby accu-
rately modeling the environment of the F-μ-F system.
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These couplings result in a relaxation of the precession
signal [solid line in Fig. 1(c)] that completely accounts for
the data and makes contact with recent electronic structure
calculations of the muon site [15,16].
The effects of interactions with more distant fluorine

nuclei can be understood by examining the energy eigen-
values shown in Fig. 1(d) where the eight next-nearest-
neighbor (nnn) couplings that occur in the fluorite structure
have also been included (analogous effects will occur in
other fluoride crystal structures). The four energy levels in
isolated F-μ-F are broadened by the nnn couplings into four
bands of energy levels. The coherences between these
energy levels are shown in the two-dimensional plots in
Fig. 1(e), where the size of the point indicates the amplitude
of the interference term between energy levels ℏω1 to ℏω2.
These diagrams are reminiscent of two-dimensional NMR
plots [17], but here there are no radio frequency pulses and
the interference between levels happen automatically in the

unitary evolution of the quantum state. Thus, the overall
structure for isolated F-μ-F in the upper panel is largely
retained in the lower panel when including the more distant
couplings, but a richer frequency spectrum results and this
mixture of frequencies is responsible for the dephasing of
the precession signal observed in experiments.
Further insight can be gained by calculating the time-

dependence of the von Neumann entropy. We consider
three cases: (i) the F-μ state, (ii) the F-μ-F state, and (iii) the
F-μ-F state with eight nnn fluorine nuclei, appropriate for
the fluorite structure [18]. The von Neumann entropy for
these states remains constant at S ¼ NF as the states evolve
unitarily, where NF is the number of fluorine nuclei in the
cluster (NF ¼ 1, 2, and 10 for the three cases, respectively).
This is because the implanted muon is initially spin
polarized and hence in a pure state, but the fluorine nuclei
are initially unpolarized. By tracing out the fluorine or
muon degrees of freedom, we are able to calculate the muon
and fluorine reduced entropies, Sμ and SF, as a function of
time, see Fig. 2. The coupling between the muon and its
fluoride environment results in the muon oscillating
between being in a completely pure (Sμ ¼ 0) and mixed
(Sμ > 0) state, with the fluorine subsystem oscillating in
antiphase. This can be interpreted in terms of quantum
information exchanging back and forth between the muon
and the fluorine subsystem; Pμ

zðtÞ reaches a maximum
whenever information is stored on the muon and a mini-
mum whenever it is residing in the fluoride subsystem. For
F-μ, there are times when the muon is in a completely
mixed state and the fluorine nucleus is in a completely pure

(a)

(c)
(d)

(b) (e)

FIG. 1. (a) The energy levels in a F-μ coupled state. The
eigenstates are labeled by the spins of the muon and the fluorine
nucleus. The red arrows link levels between which quantum-
mechanical interference can occur and the energies are in units of
ℏωD ¼ ℏ2μ0γμγF=ð4πr3Þ. (b) The energy levels for a F-μ-F state,
also showing possible interefences (thicker lines connect energy
levels between which there is the largest amplitude of quantum
interference). The energy eigenvalues are very slightly different
from those shown once the small F-F dipolar coupling is
included, as will be done in all subsequent plots. (c) The time
dependence of the muon polarization PμðtÞ for isolated F-μ
(dotted line), isolated F-μ-F (dashed line) and for F-μ-F also
coupled to eight next-nearest-neighbor fluorine nuclear spins
appropriate for the fluorite structure. These simulations are for an
experiment in zero applied magnetic field, and assume a poly-
crystalline average over all possible orientations of the F-μ or
F-μ-F species. (d) Energy levels for the F-μ-F state including
next-nearest-neighbor fluorine nuclear spins. (e) Interefence
amplitude for isolated F-μ-F (top panel) and with the next-
nearest-neighbor couplings (bottom panel). The amplitude of the
quantum interference between energy levels ℏω1 and ℏω2 is
represented by the relative areas of the points in the top panel and
by a grey scale in the bottom panel. The energy scales of (b) and
(d) are lined up with these two panels.

FIG. 2. von Neumann entropy for muon-fluorine states. The
time dependence of the muon polarization Pμ

zðtÞ, the muon
entropy Sμ (obtained by tracing out all the other spins), and
the entropy of the entire fluorine system, SF [note that
SFð0Þ ¼ NF, and our von Neumann entropies use log2, so that
information is measured in bits]. These are plotted for the three
cases of isolated F-μ, isolated F-μ-F and environmentally deco-
hering F-μ-F. These simulations assume the F-μ (or F-μ-F) bond
is aligned with the initial muon spin polarization. (The other case
is treated in [19] and shows similar behavior.)
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state, but for F-μ-F the fluoride subsystem never evolves
into a pure state. However, for both F-μ and F-μ-F,
the muon periodically returns to a completely pure state
(Sμ ¼ 0) and the quantum information is therefore
never lost.
However, when the effect of the eight additional nnn

fluorines is included, the muon never recovers to a pure
state within the timescale of a typical muon experiment
(25 μs). Thus the eight nnn fluorines act as a source of
decoherence, so that information transferred from the muon
remains in this subsystem and never completely returns to
the muon [19]. This results in the oscillations in Pμ

zðtÞ
exhibiting relaxation. However, even including nnn inter-
actions only results in a larger interacting cluster and does
not yet account for the decoherence due to the entire
crystal, an issue we will return to.
To demonstrate how to account for system-environment

interactions, we identified CaF2 as a model system since the
Ca nuclear spin can be neglected (the most abundant Ca
isotopes have I ¼ 0 and make up 99.86% of the nuclei);
thus only the fluorine nuclei contribute to the μSR
spectrum. CaF2 adopts the cubic fluorite structure (lattice
parameter a ¼ 5.451 Å), and the muon site has been
identified by density functional theory calculations
(DFTþ μ [15] using Quantum ESPRESSO [22]). The muon
site lies between two fluoride ions, each of which is pulled
in towards the muon, resulting in a 14% reduction in the
F-F separation distance. These calculations show that the
effect of the muon on the positions of the more distant
nuclei is negligible. We used an exact diagonalization
method to evaluate the time evolution of the density matrix
and simulate Pμ

zðtÞ [23,24]. The muon enters the sample
in a spin-polarized state, with the surrounding nuclei in
mixed states and the time evolution of the muon’s spin
(labeled here as spin i ¼ 0), PμðtÞ, can be calculated
as PμðtÞ ¼ 1

2
hTr½σμn̂ expð−iĤt=ℏÞσμn̂ expðiĤt=ℏÞ�in̂, where

h…in̂ represents the angular average over n̂ (appropriate for
an experiment on a polycrystalline sample), and σμn̂ is the
Pauli spin operator for the muon in the direction of n̂. An
exact treatment has the virtue of accounting for all
interactions precisely, but can only be carried out with a
small number of nearest neighbors [as was performed in
Ref. [24], albeit with a random-phase approximation to
evaluate PμðtÞ]. The dimension of the Hilbert space is
2
Q

M
i¼1ð2Ii þ 1Þ, where the product is over the M nuclei

included in the calculation (and the initial factor of two is
due to the muon spin), and this dimension grows exponen-
tially with M, making this method prohibitively computa-
tionally expensive when too many nuclei are included [25].
Hence we restrict our diagonalization method to include
only nearest-neighbor and nnn fluorine nuclei, but scale the
nnn interactions to account for all couplings in the infinite
lattice. This can be done in a quantitative way by consid-
ering the second moment of the nuclear dipole field
distribution, a quantity well known from the theory of

broadening of NMR lines [26,27]. The second moment
σ2M of this distribution at the muon site is given by
σ2M ¼ 2

3
ðμ0=4πÞ2ℏ2γ2μ

P
M
j¼1 γ

2
j IjðIj þ 1Þ=r6j , where rj is

the distance from the muon to the jth nucleus with spin
Ij and gyromagnetic ratio γj, γμ (¼ 2π × 135.5 MHzT−1)
is the muon gyromagnetic ratio, and the sum converges as
M → ∞. We then calculate ζ such that

σ2∞ ¼ σ2nn þ
2

3

�
μ0
4π

�
2

ℏ2γ2μ
X
j∈nnn

γ2j IjðIj þ 1Þ
ðζrjÞ6

; ð2Þ

where σ2nn is due to nearest-neighbor couplings only and the
sum is restricted to nnn. Thus we adjust our coupling to the
nnn nuclei using the parameter ζ to mimic the effect of all
more distant couplings. Because contributions to the
second moment scale as 1=r6j , we expect ζ to be close
to unity (but ζ < 1 because the more distant couplings
make a positive contribution to σ2∞).
For CaF2, a direct calculation of equation (2) results in

ζ ¼ 0.943, thus slightly enhancing the coupling with the
nnn fluorine nuclei so that they are able to act as a proxy for
all the coupling beyond the nnn fluorine to the rest of the
lattice. The Hamiltonian can then be easily evaluated for
this system of eleven particles (one muon, two nearest-
neighbor fluorine nuclei and eight next-nearest-neighbor
fluorine nuclei), and has dimension 2048 × 2048, whereas
including the next shell of fluoride neighbors would
become unfeasible for exact diagonalization. Our DFTþ μ
calculations on CaF2 show that the nnn fluoride ions do
move towards the muon by a very small distance (approx-
imately 0.03 Å), and including this in our calculation of ζ
leads to ζ ¼ 0.937.
We performed a μSR measurement on CaF2 and our

measured asymmetry data on CaF2 were fitted to the
function AðtÞ ¼ A0Pμðrnn; ζ; tÞ þ Abg, where A0 accounts
for muons which form diamagnetic states, Abg accounts for
muons stopping outside the sample, and Pμðrnn; ζ; tÞ is the
polarization signal on which we are focusing. [Here, rnn
corresponds to the nearest-neighbor F-μ distance, and ζ is
the relative adjustment of the nnn coupling, defined in (2).]
The value of A0 is consistent with approximately 35% of
muons implanting in diamagnetic states, suggesting the
remainder are in muonium states, in agreement with
previous work [28]. The agreement of our simulations
with our experimentally observed AðtÞ can be seen in
Fig. 3(a). If only the nearest-neighbor fluorine nuclei are
considered [isolated F-μ-F, dashed line in Fig. 3(a)], then
the fit is very poor, but the inclusion of nnn couplings
results in an impressive agreement between theory and
experiment [solid line in Fig. 3(a)]. Note that this fit does
not need to include any phenomenological relaxation
function of the sort used in previous studies [7–13].
Instead, the observed relaxation of the oscillations results
entirely from the nnn couplings. Our fit uses only two
fitting parameters, one of which is the distance between the
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muon and the two nearest-neighbor fluorine nuclei, which
is found to be 1.172(1) Å (very close to the DFT predic-
tion of 1.134 Å, and dramatically shorter than the
a=4 ¼ 1.362 Å expected if there was no muon-induced
distortion). The second fitting parameter is ζ ¼ 0.920ð3Þ,
within 2% of our predicted value. These results demon-
strate that, with suitable scaling, the eight nnn fluoride
ions, which constitute a spin-subspace of dimensionality
28 ¼ 256, can provide an adequate representation of the
full environment due to the entire crystal [Fig. 3(b)],
allowing a quantitative description of the decoherence
for this problem.
We also now demonstrate that this method can be

extended to the more general case, in which the cation
nuclear spin is non-negligible. NaF adopts the rocksalt
structure and contains sodium nuclei which have spin
I ¼ 3

2
. In this case, the muon forms an F-μ-F state with

the muon sitting at the centre of a square containing two
fluorine ions and two sodium ions on the corners. The
strongest coupling is with the two nearest fluorine nuclei,
but the next largest couplings arise from the two sodium
nuclei; the next largest couplings are due to four next-
nearest-neighbor fluorine nuclei. We used the next-nearest-
neighbor fluorine nuclei (subspace dimension 16) as a
proxy for all of the more distant fluorine and sodium
couplings, and evaluated the muon polarization function

only for these nine spins [one muon, the two closest
fluorines and sodiums, and four nnn fluorines, as shown
in Fig. 3(d), giving a Hamiltonian with dimensionality
2048], and we also include the quadrupolar interaction
of the Na nuclei in the electric field gradient of the muon
[19]. We collected very high statistics μSR data on
NaF so that we could carefully study the details of
the precession signals. The fitting function used was
AðtÞ ¼ A0PμðrFnn; rNann ; ζ; tÞ þ Abg, and the analysis again
demonstrated that the nearest-neighbor fluorine anions are
pulled towards the muon and the sodium cations are pushed
out (so that rFnn ¼ 1.1980ð3Þ Å and rNann ¼ 2.31ð3Þ Å,
rather than both being 1.637 Å without the muon-induced
distortion, values which are in good agreement with our
DFTþ μ calculations [19]). The value of rNann was used in
evaluating the quadrupole interaction via the calculated
electric field gradient from the muon. The scaling para-
meter was fitted to be ζ ¼ 0.86ð1Þ, very close to the
calculated value ζ ¼ 0.88 [19]. The fit was in excellent
agreement with data [Fig. 3(c)], and no phenomenological
relaxation functions were required; all the parameters used
in the fit are derived directly from the physics of the system.
In summary, we have found that the couplings between

fluorine nuclei and positive muons can act as an ideal
model system to observe the effects of quantum informa-
tion dissipation through decoherence. We expect our

(a) (b)

(c) (d)

FIG. 3. (a) Muon decay asymmetry data AðtÞ for polycrystalline CaF2 (at 50 K), together with the simulated muon polarization
without (dotted line) and with (solid line) the effects of environmental decoherence. (b) The muon (black sphere) strongly coupled to two
fluorine nuclei (dark blue spheres), and weakly coupled to next-nearest neighbor fluorine nuclei (cyan spheres), embedded inside the
fluorite structure of CaF2. (c) AðtÞ for NaF (at 100 K), with simulations as in (a). (d) The muon (black sphere) strongly coupled with the
two nearest-neighbor fluorine nuclei (blue spheres, pulled close to the muon) and weakly coupled with the two nearest sodium nuclei
(orange spheres, pushed away from the muon), and the next-nearest-neighbor fluorine nuclei (cyan spheres).
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method to find wide applicability in quantitatively describ-
ing decohering relaxation in muon experiments on a wide
range of other crystalline materials.
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