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We study the characteristic timescales of the fluctuating local moments in Hund’s metal systems for
different degrees of correlation. By analyzing the dynamical spin susceptibility in the real-time domain, we
determine the timescales controlling oscillation and damping of on-site fluctuations—a crucial factor for
the detection of local moments with different experimental probes. We apply this procedure to different
families of iron pnictides or chalcogenides, explaining the material trend in the discrepancies reported
between experimental and theoretical estimates of their magnetic moments.
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Introduction.—Our perception of the natural world is
significantly shaped by the properties of the detection
process considered. One crucial aspect is the timescale
of the probing mechanism: If this is larger than the typical
timescale of the phenomenon under investigation, only
averaged information will be gained.
Here, we focus on the detection of the local magnetic

moments in correlated metallic systems. Their proper
description is, indeed, a key to understandingmany-electron
systems beyond the conventional band-theory framework,
being central to: Kondo physics [1,2], Mott-Hubbard [3–5]
or Hund-Mott [6–10] metal-insulator transitions, quantum
criticality of heavy fermion systems [11,12], magnetic and
spectroscopic properties of Ni and Fe [13–15], and of
unconventional superconductors [16,17].
Reflecting the high physical interest, several experimental

procedures are used to detect the local magnetic moments
and their manifestations [18]: measurements of static sus-
ceptibilities [13,18], inelastic neutron spectroscopy (INS)
[19], by integrating over the Brillouin zone (BZ) [20], x-ray
absorption or emission spectroscopy (XAS or XES), etc.
Whether it is possible to obtain an accurate description of

the local moments largely depends on the relation between
the intrinsic timescales of the experimental probes and
those characterizing the dynamical screening mechanisms
at work. The emerging picture is typically clear-cut if the
screening processes are strongly suppressed: In Mott or
Hund’s-Mott insulating phases, a coherent description of
the magnetic moment properties can be easily obtained in
all experimental setups. A more complex, multifaceted
situation characterizes systems where well preformed
magnetic moments present a rich dynamics. Good exam-
ples are the strongly correlated metallic regimes adjacent to
a Mott metal-insulator transition, or even better, com-
pounds displaying a Hund’s metal behavior [6,21], such
as iron pnictides and chalcogenides [17].

In this Letter, we illustrate how to quantitatively estimate
the characteristic timescales of fluctuating moments in
many-electron systems within the regime of linear
response. As a pertinent example, we apply this procedure
to investigate the puzzling discrepancies between experi-
mental and theoretical estimates of the magnetic moment
size in the different families of iron pnictides or chalco-
genides, clarifying the peculiar material dependence of this
long-standing issue.
An intuitive picture.—For a transparent interpretation of

our realistic calculations, we start from some heuristic
considerations on the dynamics of the local magnetic
moment μ⃗ ¼ gðμB=ℏÞS⃗ in a correlated metal. The relevant
information is encoded in the time dependence of its
correlation function

F ðtÞ≡ 1

2
g2

μ2B
ℏ2

hfŜzðtÞ; Ŝzð0Þgi; ð1Þ

where g ≅ 2 is the Landé factor, μB the Bohr magneton and
Ŝz ¼

P
l ŝ

l
z the z component of the total spin moment

hosted by the correlated atom (e.g., a transition metal
element), built up by the unpaired electronic spins sz of its
partially filled d or f shells [18]. We stress that Eq. (1)
describes both the static (thermal) and dynamic (Kubo) part
of the response [22], which is needed for our study. In
general, one expects the maximum values of F ðtÞ at t ¼ 0:
This describes the instantaneous spin configuration of the
system, often quite large in a multiorbital open shell due to
the Hund’s rule. Because of electronic fluctuations, the
probability of finding a magnetic moment of the same size
and the same orientation will be decreasing with time. At a
first approximation, one can identify two distinct patterns
for this process: (i) a gradual rotation (with constant
amplitude) and (ii) a progressive reduction of the size of
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the local moment. Within this simple picture, two charac-
teristic time (and energy) scales for the local moment
dynamics are naturally defined: (i) the period of the rotation
(tω̄ ∝ 1=ω̄) and (ii) the characteristic time (tγ ∝ ℏ=γ) for the
amplitude damping.
The values of the characteristic timescales may vary

considerably from one material to another, with overall
larger values associated to a suppressed electronic mobility.
In the extreme case of a Mott insulator, one expects to
observe long-living magnetic moments, consistent with the
analytic divergence of the timescales found in the fully
localized (atomic) limit (tω̄, tγ → ∞). On the opposite side,
in a conventional (weakly correlated) metal, both scales
will be extremely short, roughly of the order of the inverse
of the bandwidth W of the conducting electrons (tω̄ ∼ tγ ∝
ℏ=W). The most interesting situation is realized in a
correlated metallic context. Here, the slowing down of
the electronic motion, induced by the electronic scattering,
increases the values of both timescales that remain finite,
nonetheless. The enhancement will depend on specific
aspects of the many-electron problem considered, possibly
affecting the two timescales in a different fashion: This leads
to the distinct regimes of underdamped (tγ ≫ tω̄) and
overdamped (tγ ≪ tω̄) local moment fluctuations, schemati-
cally depicted in Fig. 1. The actual hierarchy of the time-
scales will strongly impact the outcome of spectroscopic
experiments. Further, quantitative information about the
dynamics of the magnetic fluctuations at equilibrium may
also provide important information for the applicability of
the adiabatic spin dynamics [23–25] and, on a broader
perspective, crucial insights for the highly nontrivial inter-
pretation of the out-of-equilibrium spectroscopies.
Quantification of timescales.—The procedure to

quantitatively estimate the characteristic timescales from
many-electron calculations and/or experimental measure-
ments relies on the Kubo-Nakano formalism for linear
response. Here, we recall that the dynamical susceptibility
is defined as

χðτÞ≡ hTτŜzðτÞŜzð0Þi; ð2Þ

in imaginary time (Tτ is the imaginary time-ordering
operator). The corresponding (retarded) spectral functions
χRðωÞ are obtained via analytic continuation of Eq. (2). The
absorption component of the spectra, ImχRðωÞ, directly
measurable (e.g., in INS), provides a direct route for
quantifying the timescales. In particular, simple analytic
expressions, directly derived for damped harmonic oscilla-
tors, can be exploited for fitting the (one or more)
predominant absorption peak(s) of ImχRðωÞ. In the illu-
strative case discussed above, one has

ImχRðωÞ ¼ A
2γω

ðω2 − ω2
0Þ2 þ 4ω2γ2

; ð3Þ

where γ and ω0 are the scales associated to the major
absorption processes active in the system under consid-
eration (with ℏ ¼ 1), and the constant A reflects the size of
the instantaneous magnetic moment. The expression is
clearly generalizable to other cases, where more absorption
peaks are visible in the spectra, as a sum of the corre-
sponding contributions [26].
The full time-dependence of the fluctuating local

moment, which will reflect the interplay of the timescales
defined above, is eventually obtained via the fluctuation-
dissipation theorem

F ðtÞ ¼ 1

π

Z
∞

0

dω cosðωtÞ cothðβ=2ωÞImχRðωÞ; ð4Þ

where β ¼ ðkBTÞ−1 is the inverse temperature.
The case of the Hund’s metals.—While the procedure

illustrated above is applicable to all spectroscopic experi-
ments of condensed matter systems, we will demonstrate its
advantages for studying Hund’s metals [6,21], where the
dynamics of fluctuating moments is of particular interest
[47]. These systems can be viewed as a new “crossover”-
state of matter, triggered by sizable values of the local
Hubbard repulsion (U) and Hund’s rule coupling (J), when
the corresponding atomic shell is (about) one electron away
from a half-filled multiorbital configuration. At strong
coupling, the interplay between U and J can induce either
a Mott or a charge-disproportionate Hund’s insulator
[9,48]. Out of half-filling, the competition between these
two tendencies can also stabilize a metallic ground state in
the presence of high values of the electronic interaction
[6,9,48,49]. The emerging physics of a large local magnetic
moment fluctuating in a strongly correlated metallic sur-
rounding evidently represents one of the best playgrounds
for applying our time-resolved procedure.
The prototypical class of materials displaying Hund’s

metal physics is represented by the iron pnictides or
chalcogenides. These compounds, which often display
unconventional superconducting phases upon doping, are
also characterized by interesting magnetic properties
[17,20,50]. Both the ordered magnetic moments (measured
by neutron diffraction in the magnetically ordered phase)
and the fluctuating moments (measured by INS in the

FIG. 1. Schematic representation of the time decay of local spin
correlations in the underdamped or overdamped regimes.
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paramagnetic high-T phase) are reported to be systemati-
cally lower [51] in experiment than in (static) local spin
density approximation calculations (predicting a large
ordered moment of about 2μB for almost all compounds
of this class). It was also noted that, surprisingly, the larger
discrepancies are found for the “less correlated” families
1111 (e.g., LaFeAsO) and 122 (e.g., BaAs2O2), which
display milder quasiparticle renormalization effects and are
characterized by lower values of the screened Coulomb
interaction estimated in constrained random phase approxi-
mation [52]. Significantly smaller (or almost no) deviations
are reported, instead, for the most correlated families such
as the 11 subclass (e.g., FeTe), where relatively large local
moments are found both in neutron experiments and theory.
Previous dynamical mean-field theory (DMFT) studies of
the INS results suggested [53–56] that the local spin
fluctuations on the Fe atom—whose time-resolved descrip-
tion is the central topic here—may be responsible for the
observed discrepancies. These works were restricted to one
compound or (at most) one family only, and did not analyze
the real-time domain. Hence, no definitive conclusion
could be drawn about this issue, motivating the present
computational material study.
Ab initio þ DMFT calculations.—We report here on our

density functional theory (DFT) þ DMFT calculations
[57,58] of the local spin susceptibilities in the iron pnictides
or chalcogenides. Different from preceding works, we
computed the spin-spin response functions on equal footing
for several different compounds, chosen as representative
of the most relevant families (1111, 122, 111, 11). As a step
forward in the theoretical description, we put emphasis on a
quantitative time-resolved analysis of the results, eventu-
ally allowing for a precise interpretation of the physics at
play and of the spectroscopic results.
For our DMFT calculations [26,59], we considered a

projection on the Fe-3d (maximally localized) Wannier-
orbital manifold. We assume an on-site electrostatic inter-
action with a generalized (orbital-dependent) Kanamori
form. The corresponding Hamiltonian reads

H ¼
X
kσlm

HlmðkÞc†klσckmσ þHint; ð5Þ

where l, m are orbital indices, k denotes the fermionic
momentum, and σ, σ0 the spin, and

Hint ¼
X
rl

Ullnrl↑nrl↓

þ
X

rσσ0;l<m

ðUlm − Jlmδσσ0 Þnrlσnrmσ0

−
X
r;l≠m

Jlm½c†rl↑c†rl↓crm↑crm↓ þ c†rl↑c
†
rm↓crm↑crl↓�;

ð6Þ
where r indicates the lattice site, and the realistic values of
the screened electrostatic interactions Ulm and Jlm for the

different materials have been taken from Ref. [52], as
detailed in [26]. The orbitally averaged values of Ū, J̄ range
from (2.53,0.38) eV for LaFeAsO to (3.41,0.48) eV for
FeTe [26].
Our DMFT results are summarized in Fig. 2, where we

show the dynamical spin susceptibility on the Fe atoms of
all compounds considered in its different representations:
imaginary time in the first-row panels [cf. Eq. (2)] which
is the direct output [60] of the quantum Monte Carlo
(QMC) solver, real frequency in the second row [from
analytic continuations], real time in the third row [Eq. (1),
via Eq. (4)]. In all cases, we performed our analysis not
only for the full DMFT calculation (third column panels),
which comprises—per construction—all purely local
effects [63,64] of the DMFT self-energy and vertex
corrections, but we also evaluate, separately, the corre-
sponding “bubble” terms (i.e., χ0 ¼ −βGG) either compu-
ted with the noninteracting Green’s function (G ¼ G0, first
column) or with the DMFT one (G ¼ GDMFT, i.e., by
including the DMFT self-energy, second column).
A quick glance at χðτÞ already illustrates an important

finding of our work: The different band structure of the
materials as well as their self-energies does not generate by
itself any distinguishable effects in the local moment
dynamics (first two columns in Fig. 2). Instead, the definite
material dependence observed is almost totally originated
by vertex corrections (third column).
One can understand the overall material trend as follows:

Instantaneous (τ ¼ 0) magnetic moments of similar (and
large) sizes but subjected to quite different screening effects
(τ → ðβ=2Þ). However, only the corresponding analysis of
ImχRðωÞ and F ðtÞ allows us to extract clear-cut physical
information. By looking at the data for F ðtÞ, we easily note
that the moment dynamics described by the bubble terms
(with or without ΣDMFT) is controlled by very short time-
scales for oscillation and damping (∼0.5 fs), roughly
corresponding to ∼ℏ=W. The inclusion of vertex correc-
tions causes, instead, a significant and strongly material-
dependent slowing down of the dynamics: In the “least-
correlated” LaFeAsO, we already observe oscillation and
damping over few fs (1 order of magnitude larger than in
the noninteracting case). These timescales visibly increase
considering more correlated families, up to the extreme
case of FeTe, dominated by an extremely long decay over
more than 25 fs.
The scenario emerging from the visual inspection of

F ðtÞ is supported, at a quantitative level, by the fit of the
main absorption peaks of ImχRðωÞ, see Table I for details.
The values tγ and tω̄ range from 3 to 30 fs, with an overall
trend which trails the progressive reduction of the quasi-
particle life time (t1P) across the different families.
Spectroscopic measurements—The significant spread of

the estimated timescale values directly affect the detect-
ability of the local magnetic moments (mloc) in the iron
pnictides or chalcogenides. While fast probes (e.g., XAS,
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XES) are able to detect the high-spin instantaneous
configuration of these Hund’s metals, the characteristic
timescale of the INS (tINS ≃ 5–10 fs ≃ ℏ=EINS, with
EINS ¼ ℏΩINS ≃ 100 meV [65]) are of the same order as
those in Table I: time-averaging effects will, thus, lead to
underestimation of the local magnetic moment

m2
loc ¼

3

π
lim
Ω→∞

RΩ
−Ω

R
BZ ImχRðq⃗;ωÞbðωÞdq⃗dωR

BZ dq⃗

¼ 3

π
lim
Ω→∞

Z
Ω

−Ω
ImχRlocðωÞbðωÞdω; ð7Þ

FIG. 2. Spin susceptibility of the 3d-Fe atoms as a function of imaginary time (first row), corresponding absorption spectra in real
frequency (second row) and correlation function in real time (third row), computed for different families of iron pnictides or
chalcogenides at β ¼ 50 eV−1 (T ≈ 232 K) in the DFTþ DMFT (third column), compared with the corresponding results of the bare
(first column) and the DMFT (second column) bubble calculations.

TABLE I. Fitting parameters ω0 and γ of the absorption
peak(s) computed in DMFT with Eq. (3) (first and second
column, where the largest energy scale is marked in bold);
effective lifetime χðt → ∞Þ ∝ e−t=tγ (third column); effective
oscillation period tω̄ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − γ2

p
(fourth column) and t1P ¼

hℏ=2ZiImΣiðω → 0Þiall orb (fifth column) is the effective orbital
averaged one-particle lifetime for the different material consid-
ered. See [26] for further details.

ω0 [eV] γ [eV] tγ [fs] tω̄ [fs] t1P [fs]

LaFeAsO 0.39 0.35 1.9 3.8 30.80
BaFe2As2 0.28 0.28 2.4 15.2 19.96
LiFeAs 0.30 0.58 7.9 � � � 12.23
KFe2As2 0.51 2.08 10.3 � � � 9.08
FeTe 0.029 0.022 29.3 34.8 2.14

FIG. 3. Material dependence of the spin-absorption spectra
in the different families of the iron pnictides or computed in
DFTþ DMFT, compared with the typical energy threshold
(∼100 meV) of INS experiments. Inset: Corresponding fraction
of m2

loc obtained integrating Eq. (7) up to Ω.
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where bðωÞ ¼ 1=ðeβω − 1Þ is the Bose-Einstein distribution
function (with ℏ ¼ 1). This is especially relevant for the less
correlated compounds (LaFeAsO and BaFe2As2), where tγ ,
tω̄ < tINS. In families with higher degrees of freedom (e.g.,
for FeTe, where tγ , tω̄ > tINS), the averaging effect gets
“mitigated,” allowing the detection of larger magnetic
moment sizes, consistent with fast probe XAS and XES
experiments [67,68]. The material dependence of local
moment dynamics is directly mirrored in the progressive
red shift of the first-absorption peak in ImχRðωÞ, as shown in
Fig. 3. Here, one can appreciate how an increasing part of the
spin absorption spectra gradually enters the accessible
energy window of the INS (main panel). This explains
the progressively reduced discrepancies in the size of the
magnetic moment (see inset) observed in the more correlated
families of the iron pnictides or chalcogenides.
Conclusions.—We illustrated how to quantitatively inves-

tigate, on the real-time domain, the dynamics of magnetic
moments in correlated systems and how to physically
interpret the obtained results in terms of their characteristic
timescales. Our procedure, exploiting the fluctuation-
dissipation theorem, is then applied to clarify the results
of INS experiments in several families of iron pnictides and
chalcogenides. In particular, the different degrees of dis-
crepancies with respect to the standard ab initio calculations
is rigorously explained by comparing the timescales of the
fluctuating moments to the characteristic timescale of
the INS probe. Remarkably, the strong differentiation among
the timescales of the materials considered, crucial for a
correct understanding of the underlying physics, is almost
entirely due to vertex corrections.
While the dynamics of the magnetic moments is

particularly intriguing in the Hund’s metal materials
considered here, the same procedure is directly applicable
to all many-electron systems and to fluctuations of different
kinds [2]. A precise quantification of the characteristic
timescales may provide new keys to connect the findings of
equilibrium and out-of-equilibrium spectroscopies, as well
as crucial information on the applicability of adiabatic spin
dynamics approaches [25].
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