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Anharmonic Origin of the Giant Thermal Expansion of NaBr
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All phonons in a single crystal of NaBr are measured by inelastic neutron scattering at temperatures of
10, 300, and 700 K. Even at 300 K, the phonons, especially the longitudinal-optical phonons, show large
shifts in frequencies and show large broadenings in energy owing to anharmonicity. Ab initio computations
are first performed with the quasiharmonic approximation (QHA) in which the phonon frequencies depend
only on V and on 7 only insofar as it alters V by thermal expansion. This QHA is an unqualified failure for
predicting the temperature dependence of phonon frequencies, even 300 K, and the thermal expansion is in
error by a factor of 4. Ab initio computations that include both anharmonicity and quasiharmonicity
successfully predict both the temperature dependence of phonons and the large thermal expansion of NaBr.
The frequencies of longitudinal-optical phonon modes decrease significantly with temperature owing to the
real part of the phonon self-energy from explicit anharmonicity originating from the cubic anharmonicity of
nearest-neighbor NaBr bonds. Anharmonicity is not a correction to the QHA predictions of thermal
expansion and thermal phonon shifts but dominates the behavior.
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Thermal expansion, a fundamental thermophysical pro-
perty, originates primarily from a competition between the
elastic energy of expansion and the phonon entropy, which
usually increases beyond harmonic behavior as a solid
expands. Thermal expansion can be calculated readily in
the quasiharmonic approximation (QHA), which assumes
that phonon frequencies depend only on volume [1-6].
The QHA theory of thermal expansion is textbook content
and is logically self-consistent. It ignores explicit anharmo-
nicity, where phonon frequencies also change with temper-
ature at a fixed volume [7-9]. Some calculations include
anharmonicity as a small correction to the QHA, but the
relative importance of anharmonicity is not yet settled [2,10].

We recently found that the QHA gave the wrong sign for
the temperature dependence of most phonons in silicon
[11]. This shows that the QHA is physically incomplete,
even though it did predict the thermal expansion correctly.
Here we report a more compelling inelastic neutron
scattering (INS) experiment to test predictions of phonons
and thermal expansion in a different material, sodium
bromide (NaBr). Like other alkali halides with the rocksalt
structure [12-14], NaBr has received special attention
owing to its cubic structure and highly ionic bonding.

The INS data from a single crystal of NaBr were
acquired with the time-of-flight spectrometer ARCS [15]
at the Spallation Neutron Source at the Oak Ridge National
Laboratory, using neutrons with an incident energy of
30 meV. Data were collected from 201 rotations of the
crystal in increments of 0.5° about the vertical [001] axis.
Data reduction gave the 4D scattering function S(Q, ¢)
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[16,17], where Q is the 3D wave vector and ¢ is the phonon
energy (from the neutron energy loss). Nonlinearities of the
ARCS instrument were corrected with a small linear
rescaling of the ¢ grid, calibrated by the positions of 45
in situ Bragg diffractions. After subtracting the background
from measurements on an empty can at the same temperature
and removing multiphonon scattering with the incoherent
approximation, the higher Brillouin zones were folded back
into an irreducible wedge in the first Brillouin zone to obtain
the spectral intensities shown in Fig. 1. The Supplemental
Material [18] describes the experiment and data analysis in
more detail.

The QHA uses an explicit dependence of phonon
frequencies on volume into the Helmholtz free energy

FANT V) = Up(V)+ {Lq"zf ©)
q.j

+ kgT In (1 - exp{—W})} (1)

where U (V) is the ground-state internal energy without any
vibrational contribution and the term & In[...] includes the
entropy that depends on volume through the individual
phonon frequencies wq ; = wg ;(V) (for the jth phonon
branch at wave vector ). The finite-displacement method,
as implemented in Phonopy [19], was used to obtain phonon
frequencies for different volumes by density functional
theory calculations with the Vienna ab initio simulation
package [20-23]. The equilibrium volume at a given
temperature 7 was obtained by minimizing FHA(T, V)
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FIG. 1.

Comparison between computational (QHA and fully anharmonic) and experimental (INS) results on phonon dispersions of

NabBr. (a)—(c) Phonons in NaBr calculated with the QHA (white dotted line) and from the full phonon spectral function (logarithmic
intensity map) from sTDEP. Temperatures are labeled in the panels. (d)—(f) Corresponding 2D slices through the 4D scattering function
S(Q, &) from INS, where ¢ = hw, along high symmetry lines in the first Brillouin zone.

with respect to volume V, keeping T as a fixed parameter.
Figure 2 shows how the QHA fails to predict both the
magnitude and shape of the thermal expansion curve of
NaBr, even at room temperature.

Anharmonic behavior was calculated by the stochasti-
cally initialized temperature dependent effective potential
method (STDEP) [24-26,42]. In sTDEP, the Born-
Oppenheimer molecular dynamics potential energy sur-
face of NaBr was evaluated by a Monte Carlo sampling of
the phase space of atom positions. The forces on atoms
were fitted to a model Hamiltonian,

H=U,+ Zp’ +2, Zcb"/’aﬁ
ij
+— ZZcD‘lﬁyua Wi, (2)

! ijk apy

by density functional theory calculations on various
configurations of displaced atoms by stochastic sampling
of a canonical ensemble, with Cartesian displacements
(u¢) normally distributed around the mean thermal dis-
placement. The U, is a fit parameter for the baseline of the
potential energy surface. The temperature-dependent
{®,;} were used to calculate phonon frequencies. The
cubic force constants ®;; capture the broadening and
additional shifts of phonon modes, as discussed below.
The vibrational free energies on a V-T grid were directly
calculated from the anharmonic phonon DOS by the sSTDEP
method. The Helmholtz free energy F(V, T) of Eq. (1) was
calculated with a)f‘lnjh instead of the quasiharmonic wg j,
thereby including the anharmonic phonon effects explicitly
in the same free energy used to predict the thermal
expansion. The equilibrium volumes were obtained by
minimization of the Helmholtz free energy at 7', giving
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FIG. 2. Thermal expansion of NaBr. The ab initio QHA (blue
solid line) and anharmonic calculations (red solid circles) are
compared to experimental results [27-29,43]. There is a large
discrepancy between the measurements and the QHA predictions,
while results from the sSTDEP method are in close agreement with
the experiments.

the results shown in Fig. 2. These equilibrium volumes are in
good agreement with experimental measurements, although
there are deviations at higher temperatures. Details of the
calculations of equilibrium volumes and phonon dispersions
are given in the Supplemental Material [18].

Some calculated phonon spectral weights are compared
to experimental measurements in Fig. 1 along directions of
high symmetry. At 10 K, all calculations agree with each
other and with the experimental measurements. At higher
temperatures, the acoustic dispersions below 14 meV show
some softening, especially at 700 K, but are not broadened
so much as the optical modes. The optical modes show
large broadening at 300 K and major changes in shape at
700 K. The temperature dependence of the optical dis-
persions is largely captured by the spectral weight calcu-
lated by sTDEP, but only a minor part of the softening is
predicted by the QHA calculations (and none of the
broadening owing to its assumption of noninteracting
modes). The largest contribution to the temperature shift
of the spectral weight is from the real part of the cubic
term, obtained as a Kramers-Kronig transformation of the
imaginary part of the self-energy as explained in the
Supplemental Material [18] with Eq. (51). The imaginary

TABLE L

part of the phonon self-energy from this cubic term is
responsible for the surprisingly large energy broadening of
the longitudinal-optical (LO) phonons at 300 K and
especially at 700 K.

The experimental INS measurements (see Fig. 1) were
fitted to give the energy shifts of LO phonons presented in
Table I. The QHA accounts for only a small part of the
experimental shifts, but the anharmonic calculations are
much more successful. The spectral intensities at the L
point are shown in Fig. 3(a). All phonons at the L point
soften and broaden significantly with temperature. Spectra
from the longitudinal-acoustic and transverse-optic phonon
modes merge into one broad peak at 700 K. The LO peak
broadens significantly, but its large thermal softening is still
evident. Figure 3(b) shows that the real part of the self-
energy of the LO phonon at the L point is approximately
—3.5 meV at 700 K, so phonon-phonon anharmonicity
dominates the thermal shift of this mode (the LO mode has
a phonon energy of 19 meV at the L point from sTDEP).
The Supplemental Material [18] shows some of the spectral
weights in more detail. There are differences between
experiment and the sTDEP calculations at 700 K, espe-
cially halfway between I" and L between 16 and 23 meV.
Some anharmonic effects in NaBr are too large to be
predicted accurately by the STDEP method.

To understand the origin of the anharmonicity at 700 K,
the cubic irreducible force constants for the three-body
interactions within the first ten coordination shells were
individually set to zero while recalculating phonon line
shapes at different Q. Figure 3(c) shows how two related
irreducible force constants dominate the line shapes.
They correspond to the nearest-neighbor cubic inter-
actions of degenerate triplets (NaNaBr and/or NaBrBr)
in the [100] direction (i.e., along the NaBr bond direction).
(By translational invariance, ®Y, 5. = —PRiE5:-) When
these force constants are switched off, the phonon line
shapes revert to narrow Lorentzian functions typical
of weakly anharmonic solids, and these Lorentzian
peaks are at energies similar to those from the QHA
calculations. The dominance of O,z = —PXiEm, ON
the phonon anharmonicity was found for phonons at all
other points in reciprocal space, as shown in the
Supplemental Material [18].

Phonon energy shifts of the LO mode with temperature.

Energy shift: (e — &9 x)/€10 k

At L point Along I'-L Along I'-X
T (K) QH ANH EXP QH ANH EXP QH ANH EXP
300 -0.003 -0.065  -0.080 (0.020) -0.037 -0.087 -0.062 (0.020) -0.031 -0.051  —0.052 (0.020)
700 —-0.025 -0.164  —0.174 (0.055) —-0.045 -0.181 —0.169 (0.055) —0.034  —-0.144  —0.132 (0.055)

QH = quasiharmonic, ANH = anharmonic, EXP = experimental.

Errors are from the instrument energy resolution and/or the peak fitting process.

Average values were used for evaluation along the path.
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Measured and calculated phonon line shapes at the L point and the real part of the phonon self-energy. (a) The 1D cut of
[0.5,0.5,0.5] r.l.u. (reciprocal lattice units) showing the temperature dependence of phonon line shapes. (The

small peak near zero is the residue from elastic scattering after correcting for the phonon creation thermal factor.) (b) Real component of
the phonon self-energy A from the third-order force constants. (c) Phonon intensities after nulling the third-order force constants,
D g, Oor DY L. associated with the nearest-neighbor degenerate triplets, where a = (x,y, z) represents the direction along the

NaBr bond.

The physics of thermal expansion requires volume
and temperature derivatives of F(V,T), specifically
O*F/(OVOT)=—pBr. The Supplemental Material [18]
obtains an expression for the ratio between 2, the thermal
expansion in the QHA, and the real . For hw,, < kzT,

6kp 6kp _
m m)’v,rv (3)

where By is the isothermal bulk modulus, v is the volume

pU/p=1~ (Fv.r +7vir) =1 -

per atom, the mode Griineisen parameter is yvé
—(V/w)(0w/0V)|;, the thermal Griineisen parameter

is yr2 - (T/w)(0w/0T)

parameter is
A VT 82(1)
=—— == 4
yV,T ® (8T3V> ) ( )

and jy r is the average anharmonicity parameter. For NaBr,
A ~0.35p, which is consistent with Fig. 2 above.

By testing different first principles calculations against
phonons measured by inelastic neutron scattering at
different temperatures, we demonstrated that the widely
accepted quasiharmonic method predicts only a small
fraction of the thermal phonon shifts and the thermal
expansion. Anharmonic effects drastically alter the phonon
self-energies, especially the LO phonons. The dominant
anharmonicity is from cubic interactions associated with
the nearest-neighbor degenerate triplets along the NaBr
bonding direction. The volume dependence of the phonon
anharmonicity dominates the thermal expansion of NaBr.

v, the mode anharmonicity

Other alkali halides with the rocksalt structure, especially
NaCl, Nal, and NaF, have similar thermal expansion as
NaBr and similar Griineisen parameters of 3.3 when
calculated as y = pBv/C,. Similar anharmonic effects
seem likely in these compounds.
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